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The Trimmed Lasso: Sparsity and Robustness

Dimitris Bertsimas, Martin S. Copenhaver, and Rahul Mazumder

Abstract

Nonconvex penalty methods for sparse modeling in linear regression have been a topic of fervent

interest in recent years. Herein, we study a family of nonconvex penalty functions that we call the

trimmed Lasso and that offers exact control over the desired level of sparsity of estimators. We analyze

its structural properties and in doing so show the following:

1) Drawing parallels between robust statistics and robust optimization, we show that the trimmed-Lasso-

regularized least squares problem can be viewed as a generalized form of total least squares under

a specific model of uncertainty. In contrast, this same model of uncertainty, viewed instead through

a robust optimization lens, leads to the convex SLOPE (or OWL) penalty.

2) Further, in relating the trimmed Lasso to commonly used sparsity-inducing penalty functions, we

provide a succinct characterization of the connection between trimmed-Lasso-like approaches and

penalty functions that are coordinate-wise separable, showing that the trimmed penalties subsume

existing coordinate-wise separable penalties, with strict containment in general.

3) Finally, we describe a variety of exact and heuristic algorithms, both existing and new, for trimmed

Lasso regularized estimation problems. We include a comparison between the different approaches

and an accompanying implementation of the algorithms.

Index Terms

Sparse modeling; Statistical regularization; Penalty methods; Nonconvex optimization

I. INTRODUCTION

Sparse modeling in linear regression has been a topic of fervent interest in recent years [23],

[42]. This interest has taken several forms, from substantial developments in the theory of the

Lasso to advances in algorithms for convex optimization. Throughout there has been a strong
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emphasis on the increasingly high-dimensional nature of linear regression problems; in such

problems, where the number of variables p can vastly exceed the number of observations n,

sparse modeling techniques are critical for performing inference.

Context: One of the fundamental approaches to sparse modeling in the usual linear regression

model of y = Xβ + ε, with y ∈ Rn and X ∈ Rn×p, is the best subset selection [57] problem:

min
‖β‖0≤k

1

2
‖y −Xβ‖22, (1)

which seeks to find the best choice of k from among p features that best explain the response in

terms of the least squares loss function. The problem (1) has received extensive attention from a

variety of statistical and optimization perspectives—see for example [14] and references therein.

One can also consider the Lagrangian, or penalized, form of (1), namely,

min
β

1

2
‖y −Xβ‖22 + µ‖β‖0, (2)

for a regularization parameter µ > 0. One of the advantages of (1) over (2) is that it offers direct

control over estimators’ sparsity via the discrete parameter k, as opposed to the Lagrangian form

(2) for which the correspondence between the continuous parameter µ and the resulting sparsity

of estimators obtained is not entirely clear. For further discussion, see [65].

Another class of problems that have received considerable attention in the statistics and

machine learning literature is the following:

min
β

1

2
‖y −Xβ‖22 +R(β), (3)

where R(β) is a choice of regularizer which encourages sparsity in β. For example, the popularly

used Lasso [70] takes the form of problem (3) with R(β) = µ‖β‖1, where ‖ · ‖1 is the `1 norm;

in doing so, the Lasso simultaneously selects variables and also performs shrinkage. The Lasso

has seen widespread success across a variety of applications.

In contrast to the convex approach of the Lasso, there also has been been growing interest in

considering richer classes of regularizers R which include nonconvex functions. Examples of such

penalties include the `q-penalty (for q ∈ [0, 1]), minimax concave penalty (MCP) [74], and the

smoothly clipped absolute deviation (SCAD) [33], among others. Many of the nonconvex penalty

functions considered are coordinate-wise separable; in other words, R can be decomposed as

R(β) =

p∑
i=1

ρ(|βi|),



IEEE TRANSACTIONS IN INFORMATION THEORY 3

where ρ(·) is a real-valued function [75]. There has been a variety of evidence suggesting

the promise of such nonconvex approaches in overcoming certain shortcomings of Lasso-like

approaches.

One of the central ideas of nonconvex penalty methods used in sparse modeling is that of

creating a continuum of estimation problems which bridge the gap between convex methods for

sparse estimation (such as Lasso) and subset selection in the form (1). However, as noted above,

such a connection does not necessarily offer direct control over the desired level of sparsity of

estimators.

The trimmed Lasso

In contrast with coordinate-wise separable penalties as considered above, we consider a family

of penalties that are not separable across coordinates. One such penalty which forms a principal

object of our study herein is

Tk (β) := min
‖φ‖0≤k

‖φ− β‖1.

The penalty Tk is a measure of the distance from the set of k-sparse estimators as measured via

the `1 norm. In other words, when used in problem (3), the penalty R = Tk controls the amount

of shrinkage towards sparse models.

The penalty Tk can equivalently be written as

Tk (β) =

p∑
i=k+1

|β(i)|,

where |β(1)| ≥ |β(2)| ≥ · · · ≥ |β(p)| are the sorted entries of β. In words, Tk (β) is the sum of the

absolute values of the p − k smallest magnitude entries of β. The penalty was first introduced

in [39], [43], [69], [72]. We refer to this family of penalty functions (over choices of k) as

the trimmed Lasso.1 The case of k = 0 recovers the usual Lasso, as one would suspect. The

distinction, of course, is that for general k, Tk no longer shrinks, or biases towards zero, the k

largest entries of β.

Let us consider the least squares loss regularized via the trimmed lasso penalty—this leads to

the following optimization criterion:

min
β

1

2
‖y −Xβ‖22 + λTk (β) , (4)

1The choice of name is our own and is motivated by the least trimmed squares regression estimator, described below



IEEE TRANSACTIONS IN INFORMATION THEORY 4

where λ > 0 is the regularization parameter. The penalty term shrinks the smallest p− k entries

of β and does not impose any penalty on the largest k entries of β. If λ becomes larger, the

smallest p− k entries of β are shrunk further; after a certain threshold—as soon as λ ≥ λ0 for

some finite λ0—the smallest p− k entries are set to zero. The existence of a finite λ0 (as stated

above) is an attractive feature of the trimmed Lasso and is known as its exactness property,

namely, for λ sufficiently large, the problem (4) exactly solves constrained best subset selection

as in problem (1) (c.f. [39]). Note here the contrast with the separable penalty functions which

correspond instead with problem (2); as such, the trimmed Lasso is distinctive in that it offers

precise control over the desired level of sparsity vis-à-vis the discrete parameter k. Further, it is

also notable that many algorithms developed for separable-penalty estimation problems can be

directly adapted for the trimmed Lasso.

Our objective in studying the trimmed Lasso is distinctive from previous approaches. In

particular, while previous work on the penalty Tk has focused primarily on its use as a tool

for reformulating sparse optimization problems [43], [69] and on how such reformulations can

be solved computationally [39], [72], we instead aim to explore the trimmed Lasso’s structural

properties and its relation to existing sparse modeling techniques.

In particular, a natural question we seek to explore is, what is the connection of the trimmed

Lasso penalty with existing separable penalties commonly used in sparse statistical learning? For

example, the trimmed Lasso bears a close resemblance to the clipped (or capped) Lasso penalty

[76], namely,
p∑
i=1

µmin{γ|βi|, 1},

where µ, γ > 0 are parameters (when γ is large, the clipped Lasso approximates µ‖β‖0).

Robustness: robust statistics and robust optimization

A significant thread woven throughout the consideration of penalty methods for sparse mod-

eling is the notion of robustness—in short, the ability of a method to perform in the face of

noise. Not surprisingly, the notion of robustness has myriad distinct meanings depending on the

context. Indeed, as Huber, a pioneer in the area of robust statistics, aptly noted:

“The word ‘robust’ is loaded with many—sometimes inconsistent—connotations.” [45,

p. 2]
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For this reason, we consider robustness from several perspectives—both the robust statistics [45]

and robust optimization [9] viewpoints.

A common premise of the various approaches is as follows: that a robust model should

perform well even under small deviations from its underlying assumptions; and that to achieve

such behavior, some efficiency under the assumed model should be sacrificed. Not surprisingly

in light of Huber’s prescient observation, the exact manifestation of this idea can take many

different forms, even if the initial premise is ostensibly the same.

Robust statistics and the “min-min” approach: One such approach is in the field of robust

statistics [45], [58], [61]. In this context, the primary assumptions are often probabilistic, i.e.

distributional, in nature, and the deviations to be “protected against” include possibly gross, or

arbitrarily bad, errors. Put simply, robust statistics is primary focused on analyzing and mitigating

the influence of outliers on estimation methods.

There have been a variety of proposals of different estimators to achieve this. One that is

particularly relevant for our purposes is that of least trimmed squares (“LTS”) [61]. For fixed

j ∈ {1, . . . , n}, the LTS problem is defined as

min
β

n∑
i=j+1

|r(i)(β)|2, (5)

where ri(β) = yi − x′iβ are the residuals and r(i)(β) are the sorted residuals given β with

|r(1)(β)| ≥ |r(2)(β)| ≥ · · · ≥ |r(n)(β)|. In words, the LTS estimator performs ordinary least

squares on the n− j smallest residuals (discarding the j largest or worst residuals).

Furthermore, it is particularly instructive to express (5) in the equivalent form (c.f. [16])

min
β

min
I⊆{1,...,n}:
|I|=n−j

∑
i∈I

|ri(β)|2. (6)

In light of this representation, we refer to LTS as a form of “min-min” robustness. One could

also interpret this min-min robustness as optimistic in the sense the estimation problems (6) and,

a fortiori, (5) allow the modeler to also choose observations to discard.

Other min-min models of robustness: Another approach to robustness which also takes a min-

min form like LTS is the classical technique known as total least squares [38], [54]. For our

purposes, we consider total least squares in the form

min
β

min
∆

1

2
‖y − (X + ∆)β‖22 + η‖∆‖22, (7)
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where ‖∆‖2 is the usual Frobenius norm of the matrix ∆ and η > 0 is a scalar parameter. In

this framework, one again has an optimistic view on error: find the best possible “correction”

of the data matrix X as X + ∆∗ and perform least squares using this corrected data (with η

controlling the flexibility in choice of ∆).

In contrast with the penalized form of (7), one could also consider the problem in a constrained

form such as

min
β

min
∆∈V

1

2
‖y − (X + ∆)β‖22, (8)

where V ⊆ Rn×p is defined as V = {∆ : ‖∆‖2 ≤ η′} for some η′ > 0. This problem again has

the min-min form, although now with perturbations ∆ as restricted to the set V .

Robust optimization and the “min-max” approach: We now turn our attention to a different

approach to the notion of robustness known as robust optimization [9], [12]. In contrast with

robust statistics, robust optimization typically replaces distributional assumptions with a new

primitive, namely, the deterministic notion of an uncertainty set. Further, in robust optimization

one considers a worst-case or pessimistic perspective and the focus is on perturbations from the

nominal model (as opposed to possible gross corruptions as in robust statistics).

To be precise, one possible robust optimization model for linear regression takes form [9],

[15], [73]

min
β

max
∆∈U

1

2
‖y − (X + ∆)β‖22, (9)

where U ⊆ Rn×p is a (deterministic) uncertainty set that captures the possible deviations of

the model (from the nominal data X). Note the immediate contrast with the robust models

considered earlier (LTS and total least squares in (5) and (7), respectively) that take the min-min

form; instead, robust optimization focuses on “min-max” robustness. For a related discussion

contrasting the min-min approach with min-max, see [8], [49] and references therein.

One of the attractive features of the min-max formulation is that it gives a re-interpretation

of several statistical regularization methods. For example, the usual Lasso (problem (3) with

R = µ`1) can be expressed in the form (9) for a specific choice of uncertainty set:

Proposition I.1 (e.g. [9], [73]). Problem (9) with uncertainty set U = {∆ : ‖∆i‖2 ≤ µ ∀i} is

equivalent to the Lasso, i.e., problem (3) with R(β) = µ‖β‖1, where ∆i denotes the ith column

of ∆.
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For further discussion of the robust optimization approach as applied to statistical problems, see

[15] and references therein.

Other min-max models of robustness: We close our discussion of robustness by considering

another example of min-max robustness that is of particular relevance to the trimmed Lasso. In

particular, we consider problem (3) with the SLOPE (or OWL) penalty [18], [35], namely,

RSLOPE(w)(β) =

p∑
i=1

wi|β(i)|,

where w is a (fixed) vector of weights with w1 ≥ w2 ≥ · · · ≥ wp ≥ 0 and w1 > 0. In its simplest

form, the SLOPE penalty has weight vector w̃, where w̃1 = · · · = w̃k = 1, w̃k+1 = · · · = w̃p = 0,

in which case we have the identity

RSLOPE(w̃)(β) = ‖β‖1 − Tk(β).

There are some apparent similarities but also subtle differences between the SLOPE penalty

and the trimmed Lasso. From a high level, while the trimmed Lasso focuses on the smallest

magnitude entries of β, the SLOPE penalty in its simplest form focuses on the largest magnitude

entries of β. As such, the trimmed Lasso is generally nonconvex, while the SLOPE penalty is

always convex; consequently, the techniques for solving the related estimation problems will

necessarily be different.

Finally, we note that the SLOPE penalty can be considered as a min-max model of robustness

for a particular choice of uncertainty set:

Proposition I.2. Problem (9) with uncertainty set

U =

∆ :
∆ has at most k nonzero

columns and ‖∆i‖2 ≤ µ ∀i


is equivalent to problem (3) with R(β) = µRSLOPE(w̃)(β), where w̃1 = · · · = w̃k = 1 and

w̃k+1 = · · · = w̃p = 0.

We return to this particular choice of uncertainty set later. (For completeness, we include a more

general min-max representation of SLOPE in Appendix A.)

Computation and Algorithms

Broadly speaking, there are numerous distinct approaches to algorithms for solving problems

of the form (1)–(3) for various choices of R. We do not attempt to provide a comprehensive
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list of such approaches for general R, but we will discuss existing approaches for the trimmed

Lasso and closely related problems. Approaches typically take one of two forms: heuristic or

exact.

Heuristic techniques: Heuristic approaches to solving problems (1)–(3) often use techniques

from convex optimization [21], such as proximal gradient descent or coordinate descent (see

[33], [55]). Typically these techniques are coupled with an analysis of local or global behavior

of the algorithm. For example, global behavior is often considered under additional restrictive

assumptions on the underlying data; unfortunately, verifying such assumptions can be as difficult

as solving the original nonconvex problem. (For example, consider the analogy with compressed

sensing [25], [30], [32] and the hardness of verifying whether underlying assumptions hold [5],

[71]).

There is also extensive work studying the local behavior (e.g. stationarity) of heuristic ap-

proaches to these problems. For the specific problems (1) and (2), the behavior of augmented

Lagrangian methods [4], [68] and complementarity constraint techniques [22], [24], [29], [34]

have been considered. For other local approaches, see [52].

Exact techniques: One of the primary drawbacks of heuristic techniques is that it can often

be difficult to verify the degree of suboptimality of the estimators obtained. For this reason,

there has been an increasing interest in studying the behavior of exact algorithms for providing

certifiably optimal solutions to problems of the form (1)–(3) [14], [16], [51], [56]. Often these

approaches make use of techniques from mixed integer optimization (“MIO”) [19] which are

implemented in a variety of software, e.g. Gurobi [40]. The tradeoff with such approaches is

that they typically carry a heavier computational burden than convex approaches. For a discussion

of the application of MIO in statistics, see [14], [16], [51], [56].

What this paper is about

In this paper, we focus on a detailed analysis of the trimmed Lasso, especially with regard to its

properties and its relation to existing methods. In particular, we explore the trimmed Lasso from

two perspectives: that of sparsity as well as that of robustness. We summarize our contributions

as follows:

1) We study the robustness of the trimmed Lasso penalty. In particular, we provide several min-

min robustness representations of it. We first show that the same choice of uncertainty set

that leads to the SLOPE penalty in the min-max robust model (9) gives rise to the trimmed
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Lasso in the corresponding min-min robust problem (8) (with an additional regularization

term). This gives an interpretation of the SLOPE and trimmed Lasso as a complementary

pair of penalties, one under a pessimistic (min-max) model and the other under an optimistic

(min-min) model.

Moreover, we show another min-min robustness interpretation of the trimmed Lasso by

comparison with the ordinary Lasso. In doing so, we further highlight the nature of the

trimmed Lasso and its relation to the LTS problem (5).

2) We provide a detailed analysis on the connection between estimation approaches using the

trimmed Lasso and separable penalty functions. In doing so, we show directly how penalties

such as the trimmed Lasso can be viewed as a generalization of such existing approaches in

certain cases. In particular, a trimmed-Lasso-like approach always subsumes its separable

analogue, and the containment is strict in general. We also focus on the specific case of

the clipped (or capped) Lasso [76]; for this we precisely characterize the relationship and

provide a necessary and sufficient condition for the two approaches to be equivalent. In

doing so, we highlight some of the limitations of an approach using a separable penalty

function.

3) Finally, we describe a variety of algorithms, both existing and new, for trimmed Lasso

estimation problems. We contrast two heuristic approaches for finding locally optimal

solutions with exact techniques from mixed integer optimization that can be used to produce

certificates of optimality for solutions found via the convex approaches. We also show that

the convex envelope [60] of the trimmed Lasso takes the form

(‖β‖1 − k)+ ,

where (a)+ := max{0, a}, a “soft-thresholded” variant of the ordinary Lasso. Throughout

this section, we emphasize how techniques from convex optimization can be used to find

high-quality solutions to the trimmed Lasso estimation problem. An implementation of the

various algorithms presented herein can be found at

https://github.com/copenhaver/trimmedlasso.

Paper structure: The structure of the paper is as follows. In Section II, we study several

properties of the trimmed Lasso, provide a few distinct interpretations, and highlight possible

generalizations. In Section III, we explore the trimmed Lasso in the context of robustness.
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Then, in Section IV, we study the relationship between the trimmed Lasso and other nonconvex

penalties. In Section V, we study the algorithmic implications of the trimmed Lasso. Finally, in

Section VI we share our concluding thoughts and highlight future directions.

II. STRUCTURAL PROPERTIES AND INTERPRETATIONS

In this section, we provide further background on the trimmed Lasso: its motivations, in-

terpretations, and generalizations. Our remarks in this section are broadly grouped as follows:

in Section II-A we summarize the trimmed Lasso’s basic properties as detailed in [39], [43],

[69], [72]; we then turn our attention to an interpretation of the trimmed Lasso as a relaxation

of complementarity constraints problems from optimization (Section II-B) and as a variable

decomposition method (Section II-C); finally, in Sections II-D and II-E we highlight the key

structural features of the trimmed Lasso by identifying possible generalizations of its definition

and its application. These results augment the existing literature by giving a deeper understanding

of the trimmed Lasso and provide a basis for further results in Sections III and IV.

A. Basic observations

We begin with a summary of some of the basic properties of the trimmed Lasso as studied

in [39], [43], [69]. First of all, let us also include another representation of Tk:

Lemma II.1. For any β,

Tk (β) = min
I⊆{1,...,p}:
|I|=p−k

∑
i∈I

|βi| = min
z
〈z, |β|〉

s. t.
∑
i

zi = p− k

z ∈ {0, 1}p,

where |β| denotes the vector whose entries are the absolute values of the entries of β.

In other words, the trimmed Lasso can be represented using auxiliary binary variables.

Now let us consider the problem

min
β

1

2
‖y −Xβ‖22 + λTk (β) , (TLλ,k)

where λ > 0 and k ∈ {0, 1, . . . , p} are parameters. Based on the definition of Tk, we have the

following:
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Lemma II.2. The problem (TLλ,k) can be rewritten exactly in several equivalent forms:

(TLλ,k) = min
β,φ:
‖φ‖0≤k

1

2
‖y −Xβ‖2 + λ‖β − φ‖1

= min
β,φ,ε:
β=φ+ε
‖φ‖0≤k

1

2
‖y −Xβ‖2 + λ‖ε‖1

= min
φ,ε:
‖φ‖0≤k

1

2
‖y −X(φ + ε)‖2 + λ‖ε‖1

Exact penalization: Based on the definition of Tk, it follows that Tk(β) = 0 if and only if

‖β‖0 ≤ k. Therefore, one can rewrite problem (1) as

min
Tk(β)=0

1

2
‖y −Xβ‖22.

In Lagrangian form, this would suggest an approximation for (1) of the form

min
β

1

2
‖y −Xβ‖22 + λTk(β),

where λ > 0. As noted in the introduction, this approximation is in fact exact (in the sense of

[10], [11]), summarized in the following theorem; for completeness, we include in Appendix B

a full proof that is distinct from that in [39].2

Theorem II.3 (c.f. [39]). For any fixed k ∈ {0, 1, 2, . . . , p}, η > 0, and problem data y and X,

there exists some λ = λ(y,X) > 0 so that for all λ > λ, the problems

min
β

1

2
‖y −Xβ‖22 + λTk (β) + η‖β‖1

and
min
β

1
2
‖y −Xβ‖22 + η‖β‖1

s. t. ‖β‖0 ≤ k

have the same optimal objective value and the same set of optimal solutions.

The direct implication is that trimmed Lasso leads to a continuum (over λ) of relaxations to

the best subset selection problem starting from ordinary least squares estimation; further, best

subset selection lies on this continuum for λ sufficiently large.

2The presence of the additional regularizer η‖β‖1 can be interpreted in many ways. For our purposes, it serves to make the

problems well-posed.
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B. A complementary constraints viewpoint

We now turn our attention to a new perspective on the trimmed Lasso as considered via

mathematical programming with complementarity constraints (“MPCCs”) [24], [44], [47], [48],

[50], [62], sometimes also referred to as mathematical programs with equilibrium constraints

[27]. By studying this connection, we will show that a penalized form of a common relaxation

scheme for MPCCs leads directly to the trimmed Lasso penalty. This gives a distinctly different

optimization perspective on the trimmed Lasso penalty.

As detailed in [22], [24], [34], the problem (1) can be exactly rewritten as

min
β,z

1

2
‖y −Xβ‖22

s. t.
∑

i zi = p− k

z ∈ [0, 1]p

ziβi = 0.

(10)

by the inclusion of auxiliary variables z ∈ [0, 1]p. In essence, the auxiliary variables replace the

combinatorial constraint ‖β‖0 ≤ k with complementarity constraints of the form ziβi = 0. Of

course, the problem as represented in (10) is still not directly amenable to convex optimization

techniques.

As such, relaxation schemes can be applied to (10). One popular method from the MPCC

literature is the Scholtes-type relaxation [44]; applied to (10) as in [24], [34], this takes the form

min
β,z

1

2
‖y −Xβ‖22

s. t.
∑

i zi = p− k

z ∈ [0, 1]p

|ziβi| ≤ t,

(11)

where t > 0 is some fixed numerical parameter which controls the strength of the relaxation,

with t = 0 exactly recovering (10). In the traditional MPCC context, it is standard to study local

optimality and stationarity behavior of solutions to (11) as they relate to the original problem

(1), c.f. [34].

Instead, let us consider a different approach. In particular, consider a penalized, or Lagrangian,

form of the Scholtes relaxation (11), namely,

min
β,z

1

2
‖y −Xβ‖22 + λ

∑
i

(|ziβi| − t)

s. t.
∑

i zi = p− k

z ∈ [0, 1]p

(12)
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for some fixed λ ≥ 0.3 Observe that we can minimize (12) with respect to z to obtain the

equivalent problem

min
β

1

2
‖y −Xβ‖22 + λTk(β)− pλt,

which is precisely problem (TLλ,`) (up to the fixed additive constant). In other words, the

trimmed Lasso can also be viewed as arising directly from a penalized form of the MPCC

relaxation, with auxiliary variables eliminated. This gives another view on Lemma II.1 which

gave a representation of Tk using auxiliary binary variables.

C. Variable decomposition

To better understand the relation of the trimmed Lasso to existing methods, it is also useful

to consider alternative representations. Here we focus on representations which connect it to

variable decomposition methods. Our discussion here is an extended form of related discussions

in [39], [43], [72].

To begin, we return to the final representation of the trimmed Lasso problem as shown in

Lemma II.2, viz.,

(TLλ,k) = min
φ,ε:
‖φ‖0≤k

1

2
‖y −X(φ + ε)‖2 + λ‖ε‖1. (13)

We will refer to (TLλ,k) in the form (13) as the split or decomposed representation of the

problem. This is because in this form it is clear that we can think about estimators β found via

(TLλ,k) as being decomposed into two different estimators: a sparse component φ and another

component ε with small `1 norm (as controlled via λ).

Several remarks are in order. First, the decomposition of β into β = φ + ε is truly a

decomposition in that if β∗ is an optimal solution to (TLλ,k) with (φ∗, ε∗) a corresponding

optimal solution to the split representation of the problem (13), then one must have that φ∗i ε
∗
i = 0

for all i ∈ {1, . . . , p}. In other words, the supports of φ and ε do not overlap; therefore,

β∗ = φ∗ + ε∗ is a genuine decomposition.

Secondly, the variable decomposition (13) suggests that the problem of finding the k largest

entries of β (i.e., finding φ) can be solved as a best subset selection problem with a (possibly

3To be precise, this is a weaker relaxation than if we had separate dual variables λi for each constraint |ziβi| ≤ t, at least in

theory.
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different) convex loss function (without ε). To see this, observe that the problem of finding φ

in (13) can be written as the problem

min
‖φ‖0≤k

L̃(φ),

where

L̃(φ) = min
ε

1

2
‖y −X(φ + ε)‖22 + λ‖ε‖1.

Using theory on duality for the Lasso problem [59], one can argue that L̃ is itself a convex loss

function. Hence, the variable decomposition gives some insight into how the largest k loadings

for the trimmed Lasso relates to solving a related sparse estimation problem.

A view towards matrix estimation: Finally, we contend that the variable decomposition of β

as a sparse component φ plus a “noise” component ε with small norm is a natural and useful

analogue of corresponding decompositions in the matrix estimation literature, such as in factor

analysis [3], [6], [53] and robust Principal Component Analysis [26]. For the purposes of this

paper, we will focus on the analogy with factor analysis.

Factor analysis is a classical multivariate statistical method for decomposing the covariance

structure of random variables; see [13] for an overview of modern approaches to factor analysis.

Given a covariance matrix Σ ∈ Rp×p, one is interested in describing it as the sum of two

distinct components: a low-rank component Θ (corresponding to a low-dimensional covariance

structure common across the variables) and a diagonal component Φ (corresponding to individual

variances unique to each variable)—in symbols, Σ = Θ + Φ.

In reality, this noiseless decomposition is often too restrictive (see e.g. [41], [63], [67]), and

therefore it is often better to focus on finding a decomposition Σ = Θ + Φ +N , where N is

a noise component with small norm. As in [13], a corresponding estimation procedure can take

the form
min
Θ,Φ

‖Σ− (Θ + Φ)‖

s. t. rank(Θ) ≤ k

Φ = diag(Φ11, . . . ,Φpp) < 0

Θ < 0,

(14)

where the constraint A < 0 denotes that A is symmetric, positive semidefinite, and ‖ ·‖ is some

norm. One of the attractive features of the estimation procedure (14) is that for common choices

of ‖ · ‖, it is possible to completely eliminate the combinatorial rank constraint and the variable
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Θ to yield a smooth (nonconvex) optimization problem with compact, convex constraints (see

[13] for details).

This exact same argument can be used to motivate the appearance of the trimmed Lasso

penalty. Indeed, instead of considering estimators β which are exactly k-sparse (i.e., ‖β‖0 ≤

k), we instead consider estimators which are approximately k-sparse, i.e., β = φ + ε, where

‖φ‖0 ≤ k and ε has small norm. Given fixed β, such a procedure is precisely

min
‖φ‖0≤k

‖β − φ‖.

Just as the rank constraint is eliminated from (14), the sparsity constraint can be eliminated

from this to yield a continuous penalty which precisely captures the quality of the approximation

β ≈ φ. The trimmed Lasso uses the choice ‖ · ‖ = `1, although other choices are possible; see

Section II-D.

This analogy with factor analysis is also useful in highlighting additional benefits of the

trimmed Lasso. One of particular note is that it enables the direct application of existing convex

optimization techniques to find high-quality solutions to (TLλ,k).

D. Generalizations

We close this section by considering some generalizations of the trimmed Lasso. These are

particularly useful for connecting the trimmed Lasso to other penalties, as we will see later in

Section IV.

As noted earlier, the trimmed Lasso measures the distance (in `1 norm) from the set of k-

sparse vectors; therefore, it is natural to inquire what properties other measures of distance might

carry. In light of this, we begin with a definition:

Definition II.4. Let k ∈ {0, 1, . . . , p} and g : R+ → R+ be any unbounded, continuous,

and strictly increasing function with g(0) = 0. Define the corresponding kth projected penalty

function, denoted πgk, as

πgk(β) = min
‖φ‖0≤k

∑
i

g(|φi − βi|).

It is not difficult to argue that πgk has as an equivalent definition

πgk(β) =
∑
i>k

g(|β(i)|).
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As an example, πgk is the trimmed Lasso penalty when g is the absolute value, viz. g(x) = |x|,

and so it is a special case of the projected penalties. Alternatively, suppose g(x) = x2/2. In this

case, we get a trimmed version of the ridge regression penalty:
∑

i>k |β(i)|2/2.

This class of penalty functions has one notable feature, summarized in the following result:4

Proposition II.5. If g : R+ → R+ is an unbounded, continuous, and strictly increasing function

with g(0) = 0, then for any β, πgk(β) = 0 if and only if ‖β‖0 ≤ k. Hence, the problem

min
β

1

2
‖y −Xβ‖22 + λπgk(β) converges in objective value to min

‖β‖0≤k

1

2
‖y −Xβ‖22 as λ→∞.

Therefore, any projected penalty πgk results in the best subset selection problem (1) asymptot-

ically. While the choice of g as the absolute value gives the trimmed Lasso penalty and leads to

exact sparsity in the non-asymptotic regime (c.f. Theorem II.3) , Proposition II.5 suggests that

the projected penalty functions have potential utility in attaining approximately sparse estimators.

We will return to the penalties πgk again in Section IV to connect the trimmed Lasso to nonconvex

penalty methods.

Before concluding this section, we briefly consider a projected penalty function that is different

than the trimmed Lasso. As noted above, if g(x) = x2/2, then the corresponding penalty function

is the trimmed ridge penalty
∑

i>k |β(i)|2/2. The estimation procedure is then

min
β

1

2
‖y −Xβ‖22 +

λ

2

∑
i>k

|β(i)|2,

or equivalently in decomposed form (c.f. Section II-C),5

min
φ,ε:
‖φ‖0≤k

1

2
‖y −X(φ + ε)‖22 +

λ

2
‖ε‖22.

It is not difficult to see that the variable ε can be eliminated to yield

min
‖φ‖0≤k

1

2
‖A(y −Xφ)‖22 , (15)

where A = (I −X(X′X + λI)−1X′)1/2. It follows that the largest k loadings are found via a

modified best subset selection problem under a different loss function—precisely a variant of

the `2 norm. This is in the same spirit of observations made in Section II-C.

4An extended statement of the convergence claim is included in Appendix B.
5Interestingly, if one considers this trimmed ridge regression problem and uses convex envelope techniques [21], [60] to relax

the constraint ‖φ‖0 ≤ k, the resulting problem takes the form minφ,ε ‖y−X(φ+ ε)‖22/2+ λ‖ε‖22 + τ‖φ‖1, a sort of “split”

variant of the usual elastic net [77], another popular convex method for sparse modeling.
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Observation II.6. An obvious question is whether the norm in (15) is genuinely different. Observe

that this loss function is the same as the usual `22 loss if and only if A′A is a non-negative multiple

of the identity matrix. It is not difficult to see that this is true iff X′X is a non-negative multiple

of the identity. In other words, the loss function in (15) is the same as the usual ridge regression

loss if and only if X is (a scalar multiple of) an orthogonal design matrix.

E. Other applications of the trimmed Lasso: the (Discrete) Dantzig Selector

The above discussion which pertains to the least squares loss data-fidelity term can be general-

ized to other loss functions as well. For example, let us consider a data-fidelity term given by the

maximal absolute inner product between the features and residuals, given by ‖X′(y −Xβ)‖∞.

An `1-penalized version of this data-fidelity term, popularly known as the Dantzig Selector [17],

[46], is given by the following linear optimization problem:

min
β
‖X′(y −Xβ)‖∞ + µ‖β‖1. (16)

Estimators found via (16) have statistical properties similar to the Lasso. Further, problem (16)

may be interpreted as an `1-approximation to the cardinality constrained version:

min
‖β‖0≤k

‖X′(y −Xβ)‖∞, (17)

that is, the Discrete Dantzig Selector, recently proposed and studied in [56]. The statistical

properties of (17) are similar to the best-subset selection problem (1), but may be more attractive

from a computational viewpoint as it relies on mixed integer linear optimization as opposed to

mixed integer conic optimization (see [56]).

The trimmed Lasso penalty can also be applied to the data-fidelity term ‖X′(y − Xβ)‖∞,

leading to the following estimator:

min
β
‖X′(y −Xβ)‖∞ + λTk (β) + µ‖β‖1.

Similar to the case of the least squares loss function, the above estimator yields k-sparse solutions

for any µ > 0 and for λ > 0 sufficiently large.6 While this claim follows a fortiori by appealing

to properties of the Dantzig selector, it nevertheless highlights how any exact penalty method

with a separable penalty function can be turned into a trimmed-style problem which offers direct

control over the sparsity level.

6For the same reason, but instead with the usual Lasso objective, the proof of Theorem II.3 (see Appendix B) could be entirely

omitted; yet, it is instructive to see in the proof there that the trimmed Lasso truly does set the smallest entries to zero, and not

simply all entries (when λ is large) like the Lasso.
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III. A PERSPECTIVE ON ROBUSTNESS

We now turn our attention to a deeper exploration of the robustness properties of the trimmed

Lasso. We begin by studying the min-min robust analogue of the min-max robust SLOPE penalty;

in doing so, we show under which circumstances this analogue is the trimmed Lasso problem.

Indeed, in such a regime, the trimmed Lasso can be viewed as an optimistic counterpart to the

robust optimization view of the SLOPE penalty. Finally, we turn our attention to an additional

min-min robust interpretation of the trimmed Lasso in direct correspondence with the least

trimmed squares estimator shown in (5), using the ordinary Lasso as our starting point.

A. The trimmed Lasso as a min-min robust analogue of SLOPE

We begin by reconsidering the uncertainty set that gave rise to the SLOPE penalty via the

min-max view of robustness as considered in robust optimization:

Uλk :=

∆ :
∆ has at most k nonzero

columns and ‖∆i‖2 ≤ λ ∀i

 .

As per Proposition I.2, the min-max problem (9), viz.,

min
β

max
∆∈Uλk

1

2
‖y − (X + ∆)β‖22

is equivalent to the SLOPE-penalized problem

min
β

1

2
‖y −Xβ‖22 + λRSLOPE(w̃)(β). (18)

for the specific choice of w̃ with w̃1 = · · · = w̃k = 1 and w̃k+1 = · · · = w̃p = 0.

Let us now consider the form of the min-min robust analogue of the the problem (9) for this

specific choice of uncertainty set. As per the discussion in Section I, the min-min analogue takes

the form of problem (8), i.e., a variant of total least squares:

min
β

min
∆∈Uλk

1

2
‖y − (X + ∆)β‖22,

or equivalently as the linearly homogenous problem7

min
β

min
∆∈Uλk

‖y − (X + ∆)β‖2. (19)

7In what follows, the linear homogeneity is useful primarily for simplicity of analysis, c.f. [9, ch. 12]. Indeed, the conversion

to linear homogeneous functions is often hidden in equivalence results like Proposition I.2.
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It is useful to consider problem (19) with an explicit penalization (or regularization) on β:

min
β

min
∆∈Uλk

‖y − (X + ∆)β‖2 + r(β), (20)

where r(·) is, say, a norm (the use of lowercase is to distinguish from the function R in Section

I).

As described in the following theorem, this min-min robustness problem (20) is equivalent to

the trimmed Lasso problem for specific choices of r. The proof is contained in Appendix B.

Theorem III.1. For any k, λ > 0, and norm r, the problem (20) can be rewritten exactly as

min
β
‖y −Xβ‖2 + r(β)− λ

k∑
i=1

|β(i)|

s. t. λ
k∑
i=1

|β(i)| ≤ ‖y −Xβ‖2.

We have the following as an immediate corollary:

Corollary III.2. For the choice of r(β) = τ‖β‖1, where τ > λ, the problem (20) is precisely

min
β
‖y −Xβ‖2 + (τ − λ)‖β‖1 + λTk (β)

s. t. λ
k∑
i=1

|β(i)| ≤ ‖y −Xβ‖2.
(21)

In particular, when λ > 0 is small, it is approximately equal (in a precise sense)8 to the trimmed

Lasso problem

min
β
‖y −Xβ‖2 + (τ − λ)‖β‖1 + λTk (β) .

In words, the min-min problem (20) (with an `1 regularization on β) can be written as a variant

of a trimmed Lasso problem, subject to an additional constraint. It is instructive to consider both

the objective and the constraint of problem (21). To begin, the objective has a combined penalty

on β of (τ −λ)‖β‖1 +λTk (β). This can be thought of as the more general form of the penalty

Tk. Namely, one can consider the penalty Tx (with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp fixed) defined as

Tx(β) :=

p∑
i=1

xi|β(i)|.

8For a precise characterization and extended discussion, see Appendix B and Theorem B.2. The informal statement here is

sufficient for the purposes of our present discussion.
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In this notation, the objective of (21) can be rewritten as ‖y −Xβ‖2 + Tx(β), with

x = (τ − λ, . . . , τ − λ︸ ︷︷ ︸
k times

, τ, . . . , τ︸ ︷︷ ︸
p−k times

).

In terms of the constraint of problem (21), note that it takes the form of a model-fitting constraint:

namely, λ controls a trade-off between model fit ‖y −Xβ‖2 and model complexity measured

via the SLOPE norm
∑k

i=1 |β(i)|.

Having described the structure of problem (21), a few remarks are in order. First of all, the

trimmed Lasso problem (with an additional `1 penalty on β) can be interpreted as (a close

approximation to) a min-min robust problem, at least in the regime when λ is small; this

provides an interesting contrast to the sparse-modeling regime when λ is large (c.f. Theorem II.3).

Moreover, the trimmed Lasso is a min-min robust problem in a way that is the optimistic analogue

of its min-max counterpart, namely, the SLOPE-penalized problem (18). Finally, Theorem III.1

gives a natural representation of the trimmed Lasso problem in a way that directly suggests why

methods from difference-of-convex optimization [2] are relevant (see Section V).

The general SLOPE penalty: Let us briefly remark upon SLOPE in its most general form

(with general w); again we will see that this leads to a more general trimmed Lasso as its

(approximate) min-min counterpart. In its most general form, the SLOPE-penalized problem

(18) can be written as the min-max robust problem (9) with choice of uncertainty set

Uλw =

{
∆ : ‖∆φ‖2 ≤ λ

∑
i

wi|φ(i)| ∀φ

}
(see Appendix A). In this case, the penalized, homogenized min-min robust counterpart, analo-

gous to problem (20), can be written as follows:

Proposition III.3. For any k, λ > 0, and norm r, the problem

min
β

min
∆∈Uλw

‖y − (X + ∆)β‖2 + r(β) (22)

can be rewritten exactly as

min
β
‖y −Xβ‖2 + r(β)− λRSLOPE(w)(β)

s. t. λRSLOPE(w)(β) ≤ ‖y −Xβ‖2.

For the choice of r(β) = τ‖β‖1, where τ > λw1, the problem (22) is

min
β
‖y −Xβ‖2 + Tτ1−λw(β)

s. t. λRSLOPE(w)(β) ≤ ‖y −Xβ‖2.
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In particular, when λ > 0 is sufficiently small, problem (22) is approximately equal to the

generalized trimmed Lasso problem

min
β
‖y −Xβ‖2 + Tτ1−λw(β).

Put plainly, the general form of the SLOPE penalty leads to a generalized form of the trimmed

Lasso, precisely as was true for the simplified version considered in Theorem III.1.

B. Another min-min interpretation

We close our discussion of robustness by considering another min-min representation of the

trimmed Lasso. We use the ordinary Lasso problem as our starting point and show how a

modification in the same spirit as the min-min robust least trimmed squares estimator in (5)

leads directly to the trimmed Lasso.

To proceed, we begin with the usual Lasso problem

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1. (23)

As per Proposition I.1, this problem is equivalent to the min-max robust problem (9) with

uncertainty set U = Lλ = {∆ : ‖∆i‖2 ≤ λ ∀i}:

min
β

max
∆∈Lλ

1

2
‖y − (X + ∆)β‖22. (24)

In this view, the usual Lasso (23) can be thought of as a least squares method which takes into

account certain feature-wise adversarial perturbations of the matrix X. The net result is that the

adversarial approach penalizes all loadings equally (with coefficient λ).

Using this setup and Theorem II.3, we can re-express the trimmed Lasso problem (TLλ,k) in

the equivalent min-min form

min
β

min
I⊆{1,...,p}:
|I|=p−k

max
∆∈LλI

1

2
‖y − (X + ∆)β‖22, (25)

where LλI ⊆ Lλ requires that the columns of ∆ ∈ LλI are supported on I:

LλI = {∆ : ‖∆i‖2 ≤ λ ∀i, ∆i = 0 ∀i /∈ I}.

While the adversarial min-max approach in problem (24) would attempt to “corrupt” all p

columns of X, in estimating β we have the power to optimally discard k out of the p corruptions

to the columns (corresponding to Ic). In this sense, the trimmed Lasso in the min-min robust

form (25) acts in a similar spirit to the min-min, robust-statistical least trimmed squares estimator

shown in problem (6).
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IV. CONNECTION TO NONCONVEX PENALTY METHODS

In this section, we explore the connection between the trimmed Lasso and existing, popular

nonconvex (component-wise separable) penalty functions used for sparse modeling. We begin in

Section IV-A with a brief overview of existing approaches. In Section IV-B we then highlight

how these relate to the trimmed Lasso, making the connection more concrete with examples in

Section IV-C. Then in Section IV-D we exactly characterize the connection between the trimmed

Lasso and the clipped Lasso [76]. In doing so, we show that the trimmed Lasso subsumes the

clipped Lasso; further, we provide a necessary and sufficient condition for when the containment

is strict. Finally, in Section IV-E we comment on the special case of unbounded penalty functions.

A. Setup and Overview

Our focus throughout will be the penalized M -estimation problem of the form

min
β
L(β) +

p∑
i=1

ρ(|βi|;µ, γ), (26)

where µ represents a (continuous) parameter controlling the desired level of sparsity of β and γ

is a parameter controlling the quality of the approximation of the indicator function I{|β| > 0}.

A variety of nonconvex penalty functions and their description in this format is shown in Table

I (for a general discussion, see [75]). In particular, for each of these functions we observe that

lim
γ→∞

ρ(|β|;µ, γ) = µ · I{|β| > 0}.

It is particularly important to note the separable nature of the penalty functions appearing in

(26)—namely, each coordinate βi is penalized (via ρ) independently of the other coordinates.

Our primary focus will be on the bounded penalty functions (clipped Lasso, MCP, and SCAD),

all of which take the form

ρ(|β|;µ, γ) = µmin{g(|β|;µ, γ), 1} (27)

where g is an increasing function of |β|. We will show that in this case, the problem (26) can

be rewritten exactly as an estimation problem with a (non-separable) trimmed penalty function:

min
β
L(β) + µ

p∑
i=`+1

g(|β(i)|) (28)

for some ` ∈ {0, 1, . . . , p} (note the appearance of the projected penalties πgk as considered in

Section II-D). In the process of doing so, we will also show that, in general, (28) cannot be solved



IEEE TRANSACTIONS IN INFORMATION THEORY 23

Name Definition Auxiliary Functions

Clipped Lasso
µmin{γ|β|, 1}

g1(|β|) =

 2γ|β| − γ2β2, |β| ≤ 1/γ,

1, |β| > 1/γ.

[76]

MCP
µmin{g1(|β|), 1}

[74]

SCAD
µmin{g2(|β|), 1}

g2(|β|) =


|β|/(γµ), |β| ≤ 1/γ,

β2+(2/γ−4µγ)|β|+1/γ2

4µ−4µ2γ2 , 1/γ < |β| ≤ 2µγ − 1/γ,

1, |β| > 2µγ − 1/γ.

[33]

`q (0 < q < 1)
µ|β|1/γ

[36], [37]

Log
µlog(γ|β|+ 1)/log(γ + 1)

[37]

TABLE I: Nonconvex penalty functions ρ(|β|;µ, γ) represented as in (26). The precise parametric

representation is different than their original presentation but they are equivalent. We have

taken care to normalize the different penalty functions so that µ is the sparsity parameter

and γ corresponds to the approximation of the indicator I{|β| > 0}. For SCAD, it is usually

recommended to set 2µ > 3/γ2.

via the separable-penalty estimation approach of (26), and so the trimmed estimation problem

leads to a richer class of models. Throughout we will often refer to (28) (taken generically over

all choices of `) as the trimmed counterpart of the separable estimation problem (26).

B. Reformulating the problem (26)

Let us begin by considering penalty functions ρ of the form (27) with g a non-negative,

increasing function of |β|. Observe that for any β we can rewrite
∑p

i=1 min{g(|βi|), 1} as

min

{
p∑
i=1

g(|β(i)|), 1 +

p∑
i=2

g(|β(i)|), . . . , p− 1 + g(|β(p)|), p

}

= min
`∈{0,...,p}

{
`+

∑
i>`

g(|β(i)|)

}
.

It follows that (26) can be rewritten exactly as

min
β,

`∈{0,...,p}

(
L(β) + µ

∑
i>`

g(|β(i)|) + µ`

)
(29)

An immediate consequence is the following theorem:
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Theorem IV.1. If β∗ is an optimal solution to (26), where ρ(|β|;µ, γ) = µmin{g(|β|;µ, γ), 1},

then there exists some `∗ ∈ {0, . . . , p} so that β∗ is optimal to its trimmed counterpart

min
β
L(β) + µ

∑
i>`∗

g(|β(i)|).

In particular, the choice of `∗ = |{i : g(|β∗i |) ≥ 1}| suffices. Conversely, if β∗ is an optimal

solution to (29), then β∗ in an optimal solution to (26).

It follows that the estimation problem (26), which decouples each loading βi in the penalty

function, can be solved using “trimmed” estimation problems of the form (28) with a trimmed

penalty function that couples the loadings and only penalizes the p − `∗ smallest. Because the

trimmed penalty function is generally nonconvex by nature, we will focus on comparing it with

other nonconvex penalties for the remainder of the section.

C. Trimmed reformulation examples

We now consider the structure of the estimation problem (26) and the corresponding trimmed

estimation problem for the clipped Lasso and MCP penalties. We use the `22 loss throughout.

Clipped Lasso: The clipped (or capped, or truncated) Lasso penalty [64], [76] takes the

component-wise form

ρ(|β|;µ, γ) = µmin{γ|β|, 1}.

Therefore, in our notation, g is a multiple of the absolute value function. A plot of ρ is shown

in Figure 1a. In this case, the estimation problem with `22 loss is

min
β

1

2
‖y −Xβ‖22 + µ

∑
i

min{γ|βi|, 1}. (30)

It follows that the corresponding trimmed estimation problem (c.f. Theorem IV.1) is exactly the

trimmed Lasso problem studied earlier, namely,

min
β

1

2
‖y −Xβ‖22 + µγTk (β) . (31)

A distinct advantage of the trimmed Lasso formulation (31) over the traditional clipped Lasso

formulation (30) is that it offers direct control over the desired level of sparsity vis-à-vis the

discrete parameter k. We perform a deeper analysis of the two problems in Section IV-D.
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(a) Clipped Lasso and MCP
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ρlog
ρ`q

(b) Log and `q

Fig. 1: Plots of ρ(|β|;µ, γ) for some of the penalty functions in Table I.

MCP: The MCP penalty takes the component-wise form

ρ(|β|;µ, γ) = µmin{g(|β|), 1}

where g is any function with g(|β|) = 2γ|β| − γ2β2 whenever |β| ≤ 1/γ and g(|β|) ≥ 1

whenever |β| > 1/γ. An example of one such g is shown in Table I. A plot of ρ is shown in

Figure 1a. Another valid choice of g is g(|β|) = max{2γ|β| − γ2β2, γ|β|}. In this case, the

trimmed counterpart is

min
β

1

2
‖y −Xβ‖2 + µγ

∑
i>`

max
{

2|β(i)| − γβ2
(i), |β(i)|

}
.

Note that this problem is amenable to the same class of techniques as applied to the trimmed

Lasso problem in the form (31) because of the increasing nature of g, although the subproblems

with respect to β are no longer convex (although it is a usual MCP estimation problem which

is well-suited to convex optimization approaches; see [55]). Also observe that we can separate

the penalty function into a trimmed Lasso component and another component:∑
i>`

|β(i)| and
∑
i>`

(
|β(i)| − γβ2

(i)

)
+
.

Observe that the second component is uniformly bounded above by (p − `)/(4γ), and so as

γ →∞, the trimmed Lasso penalty dominates.
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D. The generality of trimmed estimation

We now turn our focus to more closely studying the relationship between the separable-penalty

estimation problem (26) and its trimmed estimation counterpart. The central problems of interest

are the clipped Lasso and its trimmed counterpart, viz., the trimmed Lasso:9

min
β

1

2
‖y −Xβ‖22 + µ

∑
i

min{γ|βi|, 1} (CLµ,γ)

min
β

1

2
‖y −Xβ‖22 + λT` (β) . (TLλ,`)

As per Theorem IV.1, if β∗ is an optimal solution to (CLµ,γ), then β∗ is an optimal solution to

(TLλ,`), where λ = µγ and ` = |{i : |β∗i | ≥ 1/γ}|. We now consider the converse: given some

λ > 0 and ` ∈ {0, 1, . . . , p} and a solution β∗ to (TLλ,`), when does there exist some µ, γ > 0

so that β∗ is an optimal solution to (CLµ,γ)? As the following theorem suggests, the existence

of such a γ is closely connected to an underlying discrete form of “convexity” of the sequence

of problems (TLλ,k) for k ∈ {0, 1, . . . , p}. We will focus on the case when λ = µγ, as this is

the natural correspondence of parameters in light of Theorem IV.1.

Theorem IV.2. If λ > 0, ` ∈ {0, . . . , p}, and β∗ is an optimal solution to (TLλ,`), then there

exist µ, γ > 0 with µγ = λ and so that β∗ is an optimal solution to (CLµ,γ) if and only if

Z(TLλ,`e) <
j − `e
j − i

Z(TLλ,i) +
`e − i
j − i

Z(TLλ,j) (32)

for all 0 ≤ i < `e < j ≤ p, where Z(P) denotes the optimal objective value to optimization

problem (P) and `e = min{`, ‖β∗‖0}.

Let us note why we refer to the condition in (32) as a discrete analogue of convexity of the

sequence {zk := Z(TLλ,k), k = 0, . . . , p}. In particular, observe that this sequence satisfies the

condition of Theorem IV.2 if and only if the function defined as the linear interpolation between

the points (0, z0), (1, z1), . . . , and (p, zp) is strictly convex about the point (`, z`).10

9One may be concerned about the well-definedness of such problems (e.g. as guaranteed vis-à-vis coercivity of the objective,

c.f. [60]). In all the results of Section IV-D, it is possible to add a regularizer η‖β‖1 for some fixed η > 0 to both (CLµ,γ)

and (TLλ,`) and the results remain valid, mutatis mutandis. The addition of this regularizer implies coercivity of the objective

functions and, consequently, that the minimum is indeed well-defined. For completeness, we note a technical reason for a choice

of η‖β‖1 is its positive homogeneity; thus, the proof technique of Lemma IV.3 easily adapts to this modification.
10To be precise, we mean that the real-valued function that is a linear interpolation of the points has a subdifferential at the

point (`, z`) which is an interval of strictly positive width.
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Before proceeding with the proof of the theorem, we state and prove a technical lemma about

the structure of (TLλ,`).

Lemma IV.3. Fix λ > 0 and suppose that β∗ is optimal to (TLλ,`).

(a) The optimal objective value of (TLλ,`) is Z(TLλ,`) = (‖y‖22 − ‖Xβ∗‖22)/2.

(b) If β∗ is also optimal to (TLλ,`′), where ` < `′, then ‖β∗‖0 ≤ ` and β∗ is optimal to (TLλ,j)

for all integral j with ` < j < `′.

(c) If κ := ‖β∗‖0 < `, then β∗ is also optimal to (TLλ,κ), (TLλ,κ+1), . . . , and (TLλ,`−1).

Further, β∗ is not optimal to (TLλ,0), (TLλ,1), . . . , nor (TLλ,κ−1).

Proof. Suppose β∗ is optimal to (TLλ,`). Define

a(ε) := ‖y − εXβ∗‖22/2 + ελT` (β∗) .

By the optimality of β∗, a(ε) ≥ a(1) for all ε ≥ 0. As a is a polynomial with degree at most

two, one must have that a′(1) = 0. This implies that

a′(1) = −〈y,Xβ∗〉+ ‖Xβ∗‖22 + λT` (β∗) = 0.

Adding (‖y‖22 − ‖Xβ∗‖22)/2 to both sides, the desired result of part (a) follows.

Now suppose that β∗ is also optimal to (TLλ,`′), where `′ > `. By part (a), one must necessarily

have that Z(TLλ,`) = Z(TLλ,`′) = (‖y‖22 − ‖Xβ∗‖22)/2. Inspecting Z(TLλ,`) − Z(TLλ,`′), we

see that

0 = Z(TLλ,`)− Z(TLλ,`′) = λ
`′∑

i=`+1

|β∗(i)|.

Hence, |β∗(`+1)| = 0 and therefore ‖β∗‖0 ≤ `.

Finally, for any integral j with ` ≤ j ≤ `′, one always has that Z(TLλ,`) ≥ Z(TLλ,j) ≥

Z(TLλ,`′). As per the preceding argument, Z(TLλ,`) = Z(TLλ,`) and so Z(TLλ,`) = Z(TLλ,j),

and therefore β∗ must also be optimal to (TLλ,j) by applying part (a). This completes part (b).

Part (c) follows from a straightforward inspection of objective functions and using the fact

that Z(TLλ,j) ≥ Z(TLλ,`) whenever j ≤ `.

Using this lemma, we can now proceed with the proof of the theorem.

Proof of Theorem IV.2. Let zk = Z(TLλ,k) for k ∈ {0, 1, . . . , p}. Suppose that µ, γ > 0 is so

that λ = µγ and β∗ is an optimal solution to (CLµ,γ). Let `e = min{`, ‖β∗‖0}. Per equation

(29), β∗ must be optimal to

min
β

min
k∈{0,...,p}

1

2
‖y −Xβ‖22 + µk + µγTk (β) . (33)
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Observe that this implies that if k is such that k is a minimizer of minkµk + µγTk (β∗), then

β∗ must be optimal to (TLλ,k).

We claim that this observation, combined with Lemma IV.3, implies that

`e = arg min
k∈{0,...,p}

µk + µγTk (β∗) .

This can be shown as follows:

(a) Suppose ` ≤ ‖β∗‖0 and so `e = min{`, ‖β∗‖0} = `. Therefore, by Lemma IV.3(b), β∗ is

not optimal to (TLλ,j) for any j < `, and thus

min
k∈{0,...,p}

µk + µγTk (β∗) = min
k∈{`,...,p}

µk + µγTk (β∗) .

If k > ` is such that k is a minimizer of minkµk + µγTk (β∗), then β∗ must be optimal to

(TLλ,k) (using the observation), and hence by Lemma IV.3(b), ‖β∗‖0 ≤ `. Combined with

` ≤ ‖β∗‖0, this implies that ‖β∗‖0 = `. Yet then, µ` = µ` + µγT` (β∗) < µk + µγTk (β∗),

contradicting the optimality of k. Therefore, we conclude that `e = ` is the only minimizer

of mink µk + µγTk (β∗).

(b) Now instead suppose that `e = ‖β∗‖0 < `. Lemma IV.3(c) implies that any optimal solution

k to mink µk + µγTk (β∗) must satisfy k ≥ ‖β∗‖0 (by the second part combined with the

observation). As before, if k > ‖β∗‖0 = `e, then µk > µ`e, and so k cannot be optimal. As

a result, k = `e = ‖β∗‖0 is the unique minimum.

In either case, we have that `e is the unique minimizer to mink µk + µγTk (β∗).

It then follows that Z(problem (33)) = z`e + µ`e. Further, by optimality of β∗, z`e + µ`e <

zi + µi for all 0 ≤ i ≤ p with i 6= `e. For 0 ≤ i < `e, this implies µ < (zi − z`e)/(`e − i) and

for j > `e, µ > (z`e − zj)/(j − `e). In other words, for 0 ≤ i < `e < j ≤ p,

z`e − zj
j − `e

<
zi − z`e
`e − i

, i.e., z`e <
j − `e
j − i

zi +
`e − i
j − i

zj.

This completes the forward direction. The reverse follows in the same way by taking any µ with

µ ∈
(

max
j>`e

z`e − zj
j − `e

,min
i<`e

zi − z`e
`e − i

)
.

We briefly remark upon one implication of the proof of Theorem IV.2. In particular, if β∗ is

a solution to (TLλ,`) and ` < ‖β∗‖0, then β∗ is not the solution to (TLλ,k) for any k 6= `.

An immediate question is whether the convexity condition (32) of Theorem IV.2 always holds.

While the sequence {Z(TLλ,k) : k = 0, 1, . . . , p} is always non-increasing, the following example
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shows that the convexity condition need not hold in general; as a result, there exist instances

of the trimmed Lasso problem whose solutions cannot be found by solving a clipped Lasso

problem.

Example IV.4. Consider the case when p = n = 2 with

y =

1

1

 and X =

 1 −1

−1 2

 .

Let λ = 1/2 and ` = 1, and consider minβ ‖y − Xβ‖22/2 + |β(2)|/2 = minβ1,β2(1 − β1 +

β2)
2/2 + (1 + β1 − 2β2)

2/2 + |β(2)|/2. This has unique optimal solution β∗ = (3/2, 1) with

corresponding objective value z1 = 3/4. One can also compute z0 = Z(TL1/2,0) = 39/40 and

z2 = Z(TL1/2,2) = 0. Note that z1 = 3/4 > (39/40)/2 + (0)/2 = z0/2 + z2/2, and so there do

not exist any µ, γ > 0 with µγ = 1/2 so that β∗ is an optimal solution to (CLµ,γ) by Theorem

IV.2. Further, it is possible to show that β∗ is not an optimal solution to (CLµ,γ) for any choice

of µ, γ ≥ 0. (See Appendix B.)

An immediate corollary of this example, combined with Theorem IV.1, is that the class of

trimmed Lasso models contains the class of clipped Lasso models as a proper subset, regardless

of whether we restrict our attention to λ = µγ. In this sense, the trimmed Lasso models comprise

a richer set of models. The relationship is depicted in stylized form in Figure 2.

Limit analysis: It is important to contextualize the results of this section as λ → ∞. This

corresponds to γ →∞ for the clipped Lasso problem, in which case (CLµ,γ) converges to the

penalized form of subset selection:

min
β

1

2
‖y −Xβ‖22 + µ‖β‖0. (CLµ,∞)

Note that penalized problems for all of the penalties listed in Table I have this as their limit as

γ →∞. On the other hand, (TLλ,`) converges to constrained best subset selection:

min
‖β‖0≤`

1

2
‖y −Xβ‖22. (TL∞,k)

Indeed, from this comparison it now becomes clear why a convexity condition of the form in

Theorem IV.2 appears in describing when the clipped Lasso solves the trimmed Lasso problem.

In particular, the conditions under (CLµ,∞) solves the constrained best subset selection problem

(TL∞,k) are precisely those in Theorem IV.2.
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Clipped Lasso
Trimmed Lasso

Fig. 2: Stylized relation of clipped Lasso and trimmed Lasso models. Every clipped Lasso model

can be written as a trimmed Lasso model, but the reverse does not hold in general.

E. Unbounded penalty functions

We close this section by now considering nonconvex penalty functions which are unbounded

and therefore do not take the form µmin{g(|β|), 1}. Two such examples are the `q penalty

(0 < q < 1) and the log family of penalties as shown in Table I and depicted in Figure 1b.

Estimation problems with these penalties can be cast in the form

min
φ

1

2
‖y −Xφ‖22 + µ

p∑
i=1

g(|φi|; γ) (34)

where µ, γ > 0 are parameters, g is an unbounded and strictly increasing function, and g(|φi|; γ)
γ→∞−−−→

I{|φi| > 0}. The change of variables in (34) is intentional and its purpose will become clear

shortly.

Observe that because g is now unbounded, there exists some λ = λ(y,X, µ, γ) > 0 so that

for all λ > λ any optimal solution (φ∗, ε∗) to the problem

min
φ,ε

1

2
‖y −X(φ + ε)‖22 + λ‖ε‖1 + µ

p∑
i=1

g(|φi|; γ) (35)

has ε∗ = 0.11 Therefore, (34) is a special case of (35). We claim that in the limit as γ → ∞

(all else fixed), that (35) can be written exactly as a trimmed Lasso problem (TLλ,k) for some

choice of k and with the identification of variables β = φ + ε.

We summarize this as follows:

Proposition IV.5. As γ → ∞, the penalized estimation problem (34) is a special case of the

trimmed Lasso problem.

11The proof involves a straightforward modification of an argument along the lines of that given in Theorem II.3. Also note

that we can choose λ so that it is decreasing in γ, ceteris paribus.
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Proof. This can be shown in a straightforward manner: namely, as γ →∞, (35) becomes

min
φ,ε

1

2
‖y −X(φ + ε)‖22 + λ‖ε‖1 + µ‖φ‖0

which can be in turn written as

min
φ,ε:
‖φ‖0≤k

1

2
‖y −X(φ + ε)‖22 + λ‖ε‖1

for some k ∈ {0, 1, . . . , p}. But as per the observations of Section II-C, this is exactly (TLλ,k)

using a change of variables β = φ + ε. In the case when λ is sufficiently large, we necessarily

have β = φ at optimality.

While this result is not surprising (given that as γ → ∞ the problem is (34) is precisely

penalized best subset selection), it is useful for illustrating the connection between (34) and the

trimmed Lasso problem even when the trimmed Lasso parameter λ is not necessarily large: in

particular, (TLλ,k) can be viewed as estimating β as the sum of two components—a sparse

component φ and small-norm (“noise”) component ε. Indeed, in this setup, λ precisely controls

the desirable level of allowed “noise” in β. From this intuitive perspective, it becomes clearer

why the trimmed Lasso type approach represents a continuous connection between best subset

selection (λ large) and ordinary least squares (λ small).

We close this section by making the following observation regarding problem (35). In partic-

ular, observe that regardless of λ, we can rewrite this as

min
β

1

2
‖y −Xβ‖22 +

p∑
i=1

ρ̃(|βi|)

where ρ̃(|βi|) is the new penalty function defined as

ρ̃(|βi|) = min
φ+ε=βi

λ|ε|+ µg(|φ|; γ).

For the unbounded and concave penalty functions shown in Table I, this new penalty function

is quasi-concave and can be rewritten easily in closed form. For example, for the `q penalty

ρ(|βi|) = µ|βi|1/γ (where γ > 1), the new penalty function is

ρ̃(|βi|) = min{µ|βi|1/γ, λ|βi|}.
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V. ALGORITHMIC APPROACHES

We now turn our attention to algorithms for estimation with the trimmed Lasso penalty. Our

principle focus throughout will be the same problem considered in Theorem II.3, namely

min
β

1

2
‖y −Xβ‖22 + λTk (β) + η‖β‖1 (36)

We present three possible approaches to finding potential solutions to (36): a first-order-based

alternating minimization scheme that has accompanying local optimality guarantees and was

first studied in [39], [72]; an augmented Lagrangian approach that appears to perform noticeably

better, despite lacking optimality guarantees; and a convex envelope approach. We contrast these

methods with approaches for certifying global optimality of solutions to (36) (described in [69])

and include an illustrative computational example. Implementations of the various algorithms

presented can be found at

https://github.com/copenhaver/trimmedlasso.

A. Upper bounds via convex methods

We start by focusing on the application of convex optimization methods to finding to finding

potential solutions to (36). Technical details are contained in Appendix C.

Alternating minimization scheme: We begin with a first-order-based approach for obtaining a

locally optimal solution of (36) as described in [39], [72]. The key tool in this approach is the

theory of difference of convex optimization (“DCO”) [1], [2], [66]. Set the following notation:

f(β) = ‖y −Xβ‖22/2 + λTk (β) + η‖β‖1,

f1(β) = ‖y −Xβ‖22/2 + (η + λ)‖β‖1,

f2(β) = λ
∑k

i=1 |β(i)|.

Let us make a few simple observations:

(a) Problem (36) can be written as min
β
f(β).

(b) For all β, f(β) = f1(β)− f2(β).

(c) The functions f1 and f2 are convex.

While simple, these observations enable one to apply the theory of DCO, which focuses

precisely on problems of the form

min
β
f1(β)− f2(β),
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where f1 and f2 are convex. In particular, the optimality conditions for such a problem have

been studied extensively [2]. Let us note that while it may appear that the representation of

the objective f as f1 − f2 might otherwise seem like an artificial algebraic manipulation, the

min-min representation in Theorem III.1 shows how such a difference-of-convex representation

can arise naturally.

We now discuss an associated alternating minimization scheme (or equivalently, a sequential

linearization scheme), shown in Algorithm 1, for finding local optima of (36). The convergence

properties of Algorithm 1 can be summarized as follows:12

Theorem V.1 ( [39], Convergence of Algorithm 1). (a) The sequence {f(β`) : ` = 0, 1, . . .},

where β` are as found in Algorithm 1, is non-increasing.

(b) The set {γ` : ` = 0, 1, . . .} is finite and eventually periodic.

(c) Algorithm 1 converges in a finite number of iterations to local minimum of (36).

(d) The rate of convergence of f(β`) is linear.

Algorithm 1 An alternating scheme for computing a local optimum to (36)
1) Initialize with any β0 ∈ Rp (` = 0); for ` ≥ 0, repeat Steps 2-3 until f(β`) = f(β`+1).

2) Compute γ` as

γ` ∈

argmax
γ

〈γ,β`〉

s. t.
∑
i

|γi| ≤ λk

|γi| ≤ λ ∀i.

(37)

3) Compute β`+1 as

β`+1 ∈ argmin
β

1

2
‖y −Xβ‖22 + (η + λ)‖β‖1 − 〈β,γ`〉. (38)

Observation V.2. Let us return to a remark that preceded Algorithm 1. In particular, we noted

that Algorithm 1 can also be viewed as a sequential linearization approach to solving (36).

Namely, this corresponds to sequentially performing a linearization of f2 (and leaving f1 as is),

and then solving the new convex linearized problem.

12To be entirely correct, this result holds for Algorithm 1 with a minor technical modification—see details in Appendix C.
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Further, let us note why we refer to Algorithm 1 as an alternating minimization scheme. In

particular, in light of the reformulation (43) of (36), we can rewrite (36) exactly as

(36) =

min
β,γ

f1(β)− 〈γ,β〉

s. t.
∑
i

|γi| ≤ λk

|γi| ≤ λ ∀i.
In this sense, if one takes care in performing alternating minimization in β (with γ fixed) and

in γ (with β fixed) (as in Algorithm 1), then a locally optimal solution is guaranteed.

We now turn to how to actually apply Algorithm 1. Observe that the algorithm is quite simple;

in particular, it only requires solving two types of well-structured convex optimization problems.

The first such problem, for a fixed β, is shown in (37). This can be solved in closed form by

simply sorting the entries of |β|, i.e., by finding |β(1)|, . . . , |β(p)|.The second subproblem, shown

in (38) for a fixed γ, is precisely the usual Lasso problem and is amenable to any of the possible

algorithms for the Lasso [31], [42], [70].

Augmented Lagrangian approach: We briefly mention another technique for finding potential

solutions to (36) using an Alternating Directions Method of Multiplers (ADMM) [20] approach.

To our knowledge, the application of ADMM to the trimmed Lasso problem is novel, although

it appears closely related to [68]. We begin by observing that (36) can be written exactly as

min
β,γ

1
2
‖y −Xβ‖22 + η ‖β‖1 + λTk (γ)

s. t. β = γ,

which makes use of the canonical variable splitting. Introducing dual variable q ∈ Rp and

parameter σ > 0, this becomes in augmented Lagrangian form

min
β,γ

max
q

1

2
‖y −Xβ‖22 + η ‖β‖1 + λTk (γ) +

〈q,β − γ〉+
σ

2
‖β − γ‖22 . (39)

The utility of such a reformulation is that it is directly amenable to ADMM, as detailed in

Algorithm 2. While the problem is nonconvex and therefore the ADMM is not guaranteed to

converge, numerical experiments suggest that this approach has superior performance to the

DCO-inspired method considered in Algorithm 1.

We close by commenting on the subproblems that must be solved in Algorithm 2. Step 2 can

be carried out using “hot” starts. Step 3 is the solution of the trimmed Lasso in the orthogonal

design case and can be solved by performed by sorting p numbers; see Appendix C.
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Algorithm 2 ADMM algorithm for (39)
1) Initialize with any β0,γ0,q0 ∈ Rp and σ > 0. Repeat, for ` ≥ 0, Steps 2, 3, and 4 until a

desired numerical convergence tolerance is satisfied.

2) Set

β`+1 ∈ argmin
β

1

2
‖y −Xβ‖22 + η‖β‖1 +

〈q`,β〉+
σ

2
‖β − γ`‖22.

3) Set

γ`+1 ∈ argmin
γ

λTk (γ) +
σ

2
‖β`+1 − γ‖22 − 〈q`,γ〉.

4) Set q`+1 = q` + σ
(
β`+1 − γ`+1

)
.

Convexification approach: We briefly consider the convex relaxation of the problem (36).

We begin by computing the convex envelope [21], [60] of Tk on [−1, 1]p (here the choice of

[−1, 1]p is standard, such as in the convexification of `0 over this set which leads to `1). The

proof follows standard techniques (e.g. computing the biconjugate [60]) and is omitted.

Lemma V.3. The convex envelope of Tk on [−1, 1]p is the function Tk defined as

Tk(β) = (‖β‖1 − k)+ .

In words, the convex envelope of Tk is a “soft thresholded” version of the Lasso penalty

(thresholded at level k). This can be thought of as an alternative way of interpreting the name

“trimmed Lasso.”

As a result of Lemma V.3, it follows that the convex analogue of (36), as taken over [−1, 1]p,

is precisely

min
β

1

2
‖y −Xβ‖22 + η‖β‖1 + λ (‖β‖1 − k)+ . (40)

Problem (40) is amenable to a variety of convex optimization techniques such as subgradient

descent [21].

B. Certificates of optimality for (36)

We close our discussion of the algorithmic implications of the trimmed Lasso by discussing

techniques for finding certifiably optimal solutions to (36). All approaches presented in the
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preceding section find potential candidates for solutions to (36), but none is necessarily globally

optimal. Let us return to a representation of (36) that makes use Lemma II.1:

min
β,z

1
2
‖y −Xβ‖22 + η‖β‖1 + λ〈z, |β|〉

s. t.
∑
i

zi = p− k

z ∈ {0, 1}p.

As noted in [39], this representation of (36) is amenable to mixed integer optimization (“MIO”)

methods [19] for finding globally optimal solutions to (36), in the same spirit as other MIO-based

approaches to statistical problems [14], [16].

One approach, as described in [69], uses the notion of “big M .” In particular, for M > 0

sufficiently large, problem (36) can be written exactly as the following linear MIO problem:

min
β,z,a

1

2
‖y −Xβ‖22 + η‖β‖1 + λ

∑
i

ai

s. t.
∑
i

zi = p− k

z ∈ {0, 1}p

a ≥ β +Mz−M1

a ≥ −β +Mz−M1

a ≥ 0.

(41)

This representation as a linear MIO problem enables the direct application of numerous existing

MIO algorithms (such as [40]).13 Also, let us note that the linear relaxation of (41), i.e., problem

(41) with the constraint z ∈ {0, 1}p replaced with z ∈ [0, 1]p, is the problem

min
β

1

2
‖y −Xβ‖22 + η‖β‖1 + λ (‖β‖1 −Mk)+ ,

where we see the convex envelope penalty appear directly. As such, when M is large, the linear

relaxation of (41) is the ordinary Lasso problem minβ
1
2
‖y −Xβ‖22 + η‖β‖1.

13There are certainly other possible representations of (43), such as using special ordered set (SOS) constraints, see e.g.

[14]. Without more sophisticated tuning of M as in [14], the SOS formulations appear to be vastly superior in terms of time

required to prove optimality. The precise formulation essentially takes the form of problem (10). An SOS-based implementation

is provided in the supplementary code as the default method of certifying optimality.
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C. Computational example

Because a rigorous computational comparison is not the primary focus of this paper, we

provide a limited demonstration that describes the behavior of solutions to (36) as computed via

the different approaches. Precise computational details are contained in Appendix C-D. We will

focus on two different aspects: sparsity and approximation quality.

Sparsity properties: As the motivation for the trimmed Lasso is ostensibly sparse modeling,

its sparsity properties are of particular interest. We consider a problem instance with p = 20,

n = 100, k = 2, and signal-to-noise ratio 10 (the sparsity of the ground truth model βtrue is 10).

The relevant coefficient profiles as a function of λ are shown in Figure 3. In this example none

of the convex approaches finds the optimal two variable solution computed using mixed integer

optimization. Further, as one would expect a priori, the optimal coefficient profiles (as well as

the ADMM profiles) are not continuous in λ. Finally, note that by design of the algorithms, the

alternating minimization and ADMM approaches yield solutions with sparsity at most k for λ

sufficiently large.

Optimality gap: Another critical question is the degree of suboptimality of solutions found via

the convex approaches. We average optimality gaps across 100 problem instances with p = 20,

n = 100, and k = 2; the relevant results are shown in Figure 4. The results are entirely as

one might expect. When λ is small and the problem is convex or nearly convex, the heuristics

perform well. However, this breaks down as λ increases and the sparsity-inducing nature of

the trimmed Lasso penalty comes into play. Further, we see that the convex envelope approach

tends to perform the worst, with the ADMM performing the best of the three heuristics. This is

perhaps not surprising, as any solution found via the ADMM can be guaranteed to be locally

optimal by subsequently applying the alternating minimization scheme of Algorithm 1 to any

solution found via Algorithm 2.

Computational burden: Loosely speaking, the heuristic approaches all carry a similar compu-

tational cost per iteration, namely, solving a Lasso-like problem. In contrast, the MIO approach

can take significantly more computational resources. However, by design, the MIO approach

maintains a suboptimality gap throughout computation and can therefore be terminated, before

optimality is certified, with a certificate of suboptimality. We do not consider any empirical

analysis of runtime here.

Other considerations: There are other additional computational considerations that are po-

tentially of interest as well, but they are primarily beyond the scope of the present work. For
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example, instead of considering optimality purely in terms of objective values in (36), there are

other critical notions from a statistical perspective (e.g. ability to recover true sparse models and

performance on out-of-sample data) that would also be necessary to consider across the multiple

approaches.

VI. CONCLUSIONS

In this work, we have studied the trimmed Lasso, a nonconvex adaptation of Lasso that acts

as an exact penalty method for best subset selection. Unlike some other approaches to exact

penalization which use coordinate-wise separable functions, the trimmed Lasso offers direct

control of the desired sparsity k. Further, we emphasized the interpretation of the trimmed

Lasso from the perspective of robustness. In doing so, we provided contrasts with the SLOPE

penalty as well as comparisons with estimators from the robust statistics and total least squares

literature.

We have also taken care to contextualize the trimmed Lasso within the literature on nonconvex

penalized estimation approaches to sparse modeling, showing that penalties like the trimmed

Lasso can be viewed as a generalization of such approaches in the case when the penalty
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function is bounded. In doing so, we also highlighted how precisely the problems were related,

with a complete characterization given in the case of the clipped Lasso.

Finally, we have shown how modern developments in optimization can be brought to bear for

the trimmed Lasso to create convex optimization optimization algorithms that can take advantage

of the significant developments in algorithms for Lasso-like problems in recent years.

Our work here raises many interesting questions about further properties of the trimmed

Lasso and the application of similar ideas in other settings. We see two particularly noteworthy

directions of focus: algorithms and statistical properties. For the former, we anticipate that an

approach like trimmed Lasso, which leads to relatively straightforward algorithms that use close

analogues from convex optimization, is simple to interpret and to implement. At the same time,

the heuristic approaches to the trimmed Lasso presented herein carry no more of a computational

burden than solving convex, Lasso-like problems. On the latter front, we anticipate that a deeper

analysis of the statistical properties of estimators attained using the trimmed Lasso would help

to illuminate it in its own right while also further connecting it to existing approaches in the

statistical estimation literature.

APPENDIX A

GENERAL MIN-MAX REPRESENTATION OF SLOPE

For completeness, in this appendix we include the more general representation of the SLOPE

penalty RSLOPE(w) in the same spirit of Proposition I.2. Here we work with SLOPE in its most

general form, namely,

RSLOPE(w)(β) =

p∑
i=1

wi|β(i)|,

where w is a (fixed) vector of weights with w1 ≥ w2 ≥ · · · ≥ wp ≥ 0 and w1 > 0.

To describe the general min-max representation, we first set some notation. For a matrix

∆ ∈ Rn×p, we let ν(∆) ∈ Rp be the vector (‖∆1‖2, . . . , ‖∆p‖2) with entries sorted so that

ν1 ≥ ν2 ≥ · · · ≥ νp. As usual, for two vectors x and y, we use x ≤ y to denote that coordinate-

wise inequality holds. With this notation, we have the following:

Proposition A.1. Problem (9) with uncertainty set

Uw = {∆ : ν(∆) ≤ w}
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is equivalent to problem (3) with R(β) = RSLOPE(w)(β). Further, problem (9) with uncertainty

set

Uw =
{
∆ : ‖∆φ‖2 ≤ RSLOPE(w)(φ) ∀φ

}
is equivalent to problem (3) with R(β) = RSLOPE(w)(β).

The proof, like the proof of Proposition I.2, follows basic techniques described in [9] and is

therefore omitted.

APPENDIX B

ADDITIONAL PROOFS

This appendix section contains supplemental proofs not contained in the main text.

Proof of Theorem II.3. Let λ = ‖y‖2 · (maxj ‖xj‖2), where xj denotes the jth row of X. We

fix λ > λ, k, and η > 0 throughout the entire proof. We begin by observing that it suffices to

show that any solution β to

min
β

1

2
‖y −Xβ‖22 + λTk (β) + η‖β‖1 (42)

satisfies Tk (β) = 0, or equivalently, ‖β‖0 ≤ k. As per Lemma II.1, problem (42) can be

rewritten exactly as
min
β,z

1
2
‖y −Xβ‖22 + λ〈z, |β|〉+ η‖β‖1

s. t.
∑
i

zi = p− k

z ∈ {0, 1}p.

(43)

Let (β∗, z∗) be any solution to (43). Observe that necessarily β∗ is also a solution to the problem

min
β

1

2
‖y −Xβ‖22 + λ〈z∗, |β|〉+ η‖β‖1. (44)

Note that, unlike (42), the problem in (44) is readily amenable to an analysis using the theory

of proximal gradient methods [7], [28]. In particular, we must have for any γ > 0 that

β∗ = proxγR (β∗ − γ(X′Xβ∗ −X′y)) , (45)

where R(β) = η‖β‖1 + λ
∑

i : z∗i =1

|βi|. Suppose that Tk (β∗) > 0. In particular, for some j ∈

{1, . . . , p}, we have β∗j 6= 0 and z∗j = 1. Yet, as per (45),14∣∣β∗j − γ〈xj,Xβ∗ − y〉
∣∣ > γ(η + λ) for all γ > 0,

14This is valid for the following reason: since β∗j 6= 0 and β∗j satisfies (45), it must be the case that
∣∣β∗j − γx′j(Xβ∗ − y)

∣∣ >
γ(η + λ), for otherwise the soft-thresholding operator at level γ(η + λ) would set this quantity to zero.
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where xj denotes the jth row of X. This implies that

|〈xj,Xβ∗ − y〉| ≥ η + λ.

Now, using the definition of λ, observe that

η + λ ≤ |〈xj,Xβ∗ − y〉| ≤ ‖xj‖2‖Xβ∗ − y‖2

≤ ‖xj‖2‖y‖ ≤ λ < λ,

which is a contradiction since η > 0. Hence, Tk (β∗) = 0, completing the proof.

Extended statement of Proposition II.5: We now include a precise version of the convergence

claim in Proposition II.5. Let us set a standard notion: we say that β is ε-optimal (for ε > 0)

to an optimization problem (P) if the optimal objective value of (P) is within ε of the objective

value of β. We add an additional regularizer η‖β‖1, for η > 0 fixed, to the objective in order

to ensure coercivity of the objective functions.

Proposition B.1 (Extended form of Proposition II.5). Let g : R+ → R+ be an unbounded,

continuous, and strictly increasing function with g(0) = 0. Consider the problems

min
β

1

2
‖y −Xβ‖22 + λπgk(β) + η‖β‖1 (46)

and

min
‖β‖0≤k

1

2
‖y −Xβ‖22 + η‖β‖1. (47)

For every ε > 0, there exists some λ = λ(ε) > 0 so that for all λ > λ,

1) For every optimal β∗ to (46), there is some β̂ so that ‖β∗− β̂‖2 ≤ ε, β̂ is feasible to (47),

and β̂ is ε-optimal to (47).

2) Every optimal β∗ to (47) is ε-optimal to (46).

Proof. The proof follows a basic continuity argument that is simpler than the one presented below

in Theorem B.2. For that reason, we do not include a full proof. Observe that the assumptions

on g imply that g−1 is well-defined on, say, g([0, 1]). If we let ε > 0 and suppose that β∗ is

optimal to (46), where λ > λ := ‖y‖22/(2g(ε/p)), and if we define β̂ to be β∗ with all but the

k largest magnitude entries truncated to zero (ties broken arbitrarily), then πgk(β
∗) ≤ ‖y‖22/(2λ)

and πgk(β
∗) =

∑p
i=1 g(|β∗i − β̂i|) so that |β∗i − β̂i| ≤ g−1(‖y‖22/(2λ)) ≤ ε/p by definition of λ.

Hence, ‖β∗ − β̂‖1 ≤ ε, and all the other claims essentially follow from this.
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Proof of Theorem III.1. We begin by showing that for any β,

min
∆∈Uλk

‖y − (X + ∆)β‖2 =

(
‖y −Xβ‖2 − λ

k∑
i=1

|β(i)|

)
+

where (a)+ := max{0, a}. Fix β and set r = y−Xβ. We assume without loss of generality that

r 6= 0 and that β 6= 0. For any ∆, note that ‖r−∆β‖2 ≥ 0 and ‖r−∆β‖2 ≥ ‖r‖2 − ‖∆β‖2
by the reverse triangle inequality. Now observe that for ∆ ∈ Uλk ,

‖∆β‖2 ≤
∑
i

|βi|‖∆i‖2 ≤
k∑
i=1

λ|β(i)|.

Therefore, ‖r − ∆β‖2 ≥
(
‖r‖2 − λ

∑k
i=1 |β(i)|

)
+

. Let I ⊆ {1, . . . , p} be a set of k indices

which correspond to the k largest entries of β (if |β(k)| = |β(k+1)|, break ties arbitrarily). Define

∆ ∈ Uλk as the matrix whose ith column is λ sgn(βi)r/‖r‖2, i ∈ I

0, i /∈ I,

where λ = min
{
λ, ‖r‖2/

(∑k
i=1 |β(i)|

)}
. It is easy to verify that ∆ ∈ Uλk and ‖r −∆β‖2 =(

‖r‖2 − λ
∑k

i=1 |β(i)|
)
+

. Combined with the lower bound, we have

min
∆∈Uλk

‖y − (X + ∆)β‖2 =

(
‖y −Xβ‖2 − λ

k∑
i=1

|β(i)|

)
+

which completes the first claim.

It follows that the problem (20) can be rewritten exactly as

min
β

(
‖y −Xβ‖2 − λ

k∑
i=1

|β(i)|

)
+

+ r(β). (48)

To finish the proof of the theorem, it suffices to show that if β∗ is a solution to (48), then

‖y −Xβ∗‖2 − λ
k∑
i=1

|β∗(i)| ≥ 0.

If this is not true, then ‖y −Xβ∗‖2 − λ
∑k

i=1 |β∗(i)| < 0 and so β∗ 6= 0. However, this implies

that for 1 > ε > 0 sufficiently small, βε := (1−ε)β∗ satisfies ‖y−Xβε‖2−λ
∑k

i=1 |(βε)(i)| < 0.

This in turn implies that (
‖y −Xβε‖2 − λ

∑k
i=1 |(βε)(i)|

)
+

+ r(βε)

<
(
‖y −Xβ∗‖2 − λ

∑k
i=1 |β∗(i)|

)
+

+ r(β∗),
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which contradicts the optimality of β∗. (We have used the absolute homogeneity of the norm r

and that β∗ 6= 0.) Hence, any optimal β∗ to (48) necessarily satisfies ‖y−Xβ∗‖2−λ
∑k

i=1 |β∗(i)| ≥

0 and so the desired results follows.

N.B. The assumption that r is a norm can be relaxed somewhat (as is clear in the proof),

although the full generality is not necessary for our purposes.

Corollary III.2 and related discussions

Here we include a precise statement of the “approximate” claim in Corollary III.2. After the

proof, we include a discussion of related technical issues.

Theorem B.2 (Precise statement of Corollary III.2). For τ > λ > 0, consider the problems

min
β
‖y −Xβ‖2 + (τ − λ)‖β‖1 + λTk (β)

s. t. λ
k∑
i=1

|β(i)| ≤ ‖y −Xβ‖2.
(49)

and

min
β
‖y −Xβ‖2 + (τ − λ)‖β‖1 + λTk (β) . (50)

For all ε > 0, there exists λ = λ(ε) > 0 so that whenever λ ∈ (0, λ),

1) Every optimal β∗ to (49) is ε-optimal to (50).

2) For every optimal β∗ to (50), there is some β̂ so that ‖β∗− β̂‖2 ≤ ε, β̂ is feasible to (49),

and β̂ is ε-optimal to (49).

Proof. Fix τ > 0 throughout. We assume without loss of generality that y 6= 0, as otherwise

the claim is obvious. We will prove the second claim first, as it essentially implies the first.

Let us consider two situations. In particular, we consider whether there exists a nonzero optimal

solution to

min
β
‖y −Xβ‖2 + τ‖β‖1. (51)

Case 1—existence of nonzero optimal solution to (51): We first consider the case when there

exists a nonzero solution to problem (51). We show a few lemmata:
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1) We first show that the norm of solutions to (50) are uniformly bounded away from zero,

independent of λ. To proceed, let β̂ be any nonzero optimal solution to (51). Observe that

if β∗ is optimal to (50), then

‖y −Xβ∗‖2 + (τ − λ)‖β∗‖1 + λTk(β
∗) ≤ ‖y −Xβ̂‖2 + (τ − λ)‖β̂‖1 + λTk(β̂)

≤ ‖y −Xβ∗‖2 + τ‖β∗‖1 − λ‖β̂‖1 + λTk(β̂),

implying that ‖β̂‖1−Tk(β̂) ≤ ‖β∗‖1−Tk(β∗). In other words,
∑k

i=1 |β̂(i)| ≤
∑k

i=1 |β∗(i)| ≤

‖β∗‖1. Using the fact that β̂ 6= 0, we have that any solution β∗ to (50) has strictly positive

norm:

‖β∗‖1 ≥ C > 0,

where C :=
∑k

i=1 |β̂(i)| is a universal constant depending only on τ (and not λ).

2) We now upper bound the norm of solutions to (50). In particular, if β∗ is optimal to (50),

then

‖y −Xβ∗‖2 + (τ − λ)‖β∗‖1 + λTk(β
∗) ≤ ‖y‖2 + 0 + 0 = ‖y‖2,

and so ‖β∗‖1 ≤ ‖y‖2/(τ − λ). (This bound is not uniform in λ, but if we restrict our

attention to, say λ ≤ τ/2, it is.)

3) We now lower bound the loss for scaled version of optimal solutions. In particular, if

σ ∈ [0, 1] and β∗ is optimal to (50), then by optimality we have that

‖y −Xβ∗‖2 + (τ − λ)‖β∗‖1 + λTk(β
∗) ≤ ‖y − σXβ∗‖2 + (τ − λ)σ‖β∗‖1 + λσTk(β

∗),

which in turn implies that

‖y − σXβ∗‖2 ≥ ‖y −Xβ∗‖2 + (τ − λ)(1− σ)‖β∗‖1 + λ(1− σ)Tk(β
∗)

≥ ‖y −Xβ∗‖2 + (τ − λ)(1− σ)C ≥ (τ − λ)(1− σ)C

by combining with the first observation.

Using these, we are now ready to proceed. Let ε > 0; we assume without loss of generality

that ε < 2‖y‖2/τ . Let

λ := min

{
ετ 3C

4‖y‖2(2‖y‖2 − ετ)
,
τ

2

}
.

Fix λ ∈ (0, λ) and let β∗ be any optimal solution to (50). Define

σ :=

(
1− ετ

2‖y‖2

)
and β̂ := σβ∗.
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We claim that β̂ satisfies the desired requirements of the theorem:

1) We first argue that ‖β∗ − β̂‖2 ≤ ε. Observe that

‖β∗ − β̂‖2 = ετ‖β∗‖2/(2‖y‖2) ≤ ετ‖β∗‖1/(2‖y‖2) ≤ ετ‖y‖2/(2‖y‖2(τ − λ)) ≤ ε.

2) We now show that β̂ is feasible to (49). This requires us to argue that λ
∑k

i=1 |β̂(i)| ≤

‖y −Xβ̂‖2. Yet,

λ
k∑
i=1

|β̂(i)| ≤ λ‖β̂‖1 = λσ‖β∗‖1 ≤ 2λσ‖y‖2/τ ≤
τ

2
(1− σ)C

≤ (τ − λ)(1− σ)C ≤ ‖y − σXβ∗‖2 = ‖y −Xβ̂‖2,

as desired. The only non-obvious step is the inequality 2λσ‖y‖2/τ ≤ τ(1− σ)C/2, which

follows from algebraic manipulations using the definitions of σ and λ.

3) Finally, we show that β̂ is (ε‖X‖2)-optimal to (49). Indeed, because β∗ is optimal to (50)

which necessarily lowers bound problem (49), we have that the objective value gap between

β̂ and an optimal solution to (49) is at most

‖y − σXβ∗‖2 − ‖y −Xβ∗‖2 + (τ − λ)(σ − 1)‖β∗‖1 + λ(σ − 1)Tk(β
∗)

≤ (1− σ)‖Xβ∗‖2 + 0 + 0 ≤ (1− σ)‖X‖2‖β∗‖2 ≤ 2(1− σ)‖X‖2‖y‖2/τ

= 2ετ/(2‖y‖2)‖X‖2‖y‖2/τ = ε‖X‖2.

As the choice of ε > 0 was arbitrary, this completes the proof of claim 2 in the theorem in the

case when 0 is not a solution to (51).

Case 2—no nonzero optimal solution to (51): In the case when there is no nonzero optimal

solution to (51), 0 is optimal and it is the only optimal point. Our analysis will be similar

to the previous approach, with the key difference being in how we lower bound the quantity

‖y − σXβ∗‖2 where β∗ is optimal to (50). Again, we have several lemmata:

1) As before, if β∗ is optimal to (50), then ‖β∗‖1 ≤ ‖y‖2/(τ − λ).

2) We now lower bound the quantity ‖y−σXβ∗‖2, where β∗ is optimal to (50) and σ ∈ [0, 1].

As such, consider the function

f(σ) := ‖y − σXβ∗‖2 + στ‖β∗‖1.

Because f is convex in σ and the unique optimal solution to (51) is 0, we have that

f(σ) ≥ f(0) + σf ′(0) ∀σ ∈ [0, 1] and f ′(0) ≥ 0
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(It is not difficult to argue that f is differentiable at 0.) An elementary computation shows

that f ′(0) = τ‖β∗‖1 − 〈y,Xβ∗〉/‖y‖2. Therefore, we have that

‖y − σXβ∗‖2 + στ‖β∗‖1 ≥ ‖y‖2 + σ (τ‖β∗‖1 − 〈y,Xβ∗〉/‖y‖2) ,

implying that

‖y − σXβ∗‖2 ≥ ‖y‖2 − σ〈y,Xβ∗〉/‖y‖2 ≥ ‖y‖2 − στ‖β∗‖1 ≥ ‖y‖2 − στ‖y‖2/(τ − λ),

with the final step following by an application of the previous lemma.

We are now ready to proceed. Let ε > 0; we assume without loss of generality that ε <

2‖y‖2/τ . Let

λ := min

{
ετ 2

4‖y‖2 − ετ
,
τ

2

}
.

Fix λ ∈ (0, λ) and let β∗ be any optimal solution to (50). Define

σ :=

(
1− ετ

2‖y‖2

)
and β̂ := σβ∗.

We claim that β̂ satisfies the desired requirements:

1) The proof of the claim that ‖β∗ − β̂‖2 ≤ ε is exactly as before.

2) We now show that β̂ is feasible to (49), which requires a different proof. Again this requires

us to argue that λ
∑k

i=1 |β̂(i)| ≤ ‖y −Xβ̂‖2. Yet,

λ
k∑
i=1

|β̂(i)| ≤ λ‖β̂‖1 = λσ‖β∗‖1 ≤ λσ‖y‖2/(τ − λ) ≤ ‖y‖2 − στ‖y‖2/(τ − λ)

≤ ‖y − σXβ∗‖2 = ‖y −Xβ̂‖2,

as desired. The only non-obvious step is the inequality λσ‖y‖2/(τ−λ) ≤ ‖y‖2−στ‖y‖2/(τ−

λ), which follows from algebraic manipulations using the definitions of σ and λ.

3) Finally, the proof that β̂ is (ε‖X‖2)-optimal to (49) follows in the same way as before.

Therefore, we conclude that in the case when 0 is the unique optimal solution to (51), then

again we have that the claim 2 of the theorem holds.

Finally, we show that claim 1 holds: any solution β∗ to (49) is ε-optimal to (50). This follows

by letting β be any optimal solution to (50). By applying the entire argument above, we know

that the objective value of some β̂, feasible to (49) and close to β, is within ε of the optimal

objective value of (49), i.e., the objective value of β∗, and within ε of the objective value of

(50), i.e., the objective value of β. This completes the proof.
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In short, the key complication is that the quantity ‖y−Xβ∗‖2 does not need to be uniformly

bounded away from zero for solutions β∗ to problem (50). This is part of the complication of

working with the homogeneous form of the trimmed Lasso problem. For a concrete example,

if one considers the homogeneous Lasso problem with p = n = 1, y = (1), and X = (1), then

the homogeneous Lasso problem minβ ‖y −Xβ‖2 + η‖β‖1 is

min
β
|1− β|+ η|β|.

For η ∈ [0, 1], β∗ = 1 is an optimal solution to this problem with corresponding error ‖y −

Xβ∗‖ = 0. If we make an assumption about the behavior of ‖y −Xβ∗‖, then we do not need

the setup as shown above.

Proof of Proposition III.3. The proof is entirely analogous to that of Theorems III.1 and B.2

and is therefore omitted.

Proof of validity of Example IV.4. Let us consider the problem instance where p = n = 2 with

y =

1

1

 and X =

 1 −1

−1 2

 .

Let λ = 1/2 and ` = 1, and consider the problem

min
β
‖y −Xβ‖22 + |β(2)| = min

β1,β2
(1− β1 + β2)

2 + (1 + β1 − 2β2)
2 + |β(2)|. (52)

We have omitted the factor of 1/2 as shown in the actual example in the main text in order to

avoid unnecessary complications.

Solving problem (52) and its related counterparts (for ` ∈ {0, 2}) can rely on convex analysis

because we can simply enumerate all possible scenarios. In particular, the solution to (52) is

β∗ = (3/2, 1) based on an analysis of two related problems:

min
β1,β2

(1− β1 + β2)
2 + (1 + β1 − 2β2)

2 + |β1|.

min
β1,β2

(1− β1 + β2)
2 + (1 + β1 − 2β2)

2 + |β2|.

(We should be careful to impose the additional constraints |β1| ≤ |β2| and |β1| ≥ |β2|, respec-

tively, although a simple argument shows that these constraints are not required in this example.)

A standard convex analysis using the Lasso (e.g. by directly using subdifferentials) shows that

the problems have respective solutions (1/2, 1/2) and (3/2, 1), with the latter having the better
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objective value in (52). As such, β∗ is indeed optimal. The solution in the cases of ` ∈ {0, 2}

follows a similarly standard analysis.

It is perhaps more interesting to study the general case where µ, γ ≥ 0. In particular, we will

show that β∗ = (3/2, 1) is not an optimal solution to the clipped Lasso problem

min
β1,β2

(1− β1 + β2)
2 + (1 + β1 − 2β2)

2 + µmin{γ|β1|, 1}+ µmin{γ|β2|, 1} (53)

for any choices of µ and γ. While in general such a problem may be difficult to fully analyze,

we can again rely on localized analysis using convex analysis. To proceed, let

f(β1, β2) = (1− β1 + β2)
2 + (1 + β1 − 2β2)

2 + µmin{γ|β1|, 1}+ µmin{γ|β2|, 1},

with the parameters µ and γ implicit. We consider the following exhaustive cases:

1) γ > 1 : In this case, f is convex and differentiable in a neighborhood of β∗. Its gradient

at β∗ is ∇f(β∗) = (0,−1), and therefore β∗ is neither locally optimal nor globally optimal

to problem (53).

2) γ < 2/3 : In this case, f is again convex and differentiable in a neighborhood of β∗. Its

gradient at β∗ is ∇f(β∗) = (µγ, µγ − 1). Again, this cannot equal (0, 0) and therefore β∗

is neither locally nor globally optimal to problem (53).

3) 2/3 < γ < 1 : In this case, f is again convex and differentiable in a neighborhood of β∗.

Its gradient at β∗ is ∇f(β∗) = (0, µγ − 1). As a necessary condition for local optimality,

we must have that µγ = 1, implying that µ > 1. Further, if β∗ is optimal to (53), then

f(β∗) ≤ f(0, 0). Yet,

f(β∗) = 1/2 + µ+ µγ = 3/2 + µ

f(0, 0) = 2,

implying that µ ≤ 1/2, in contradiction of µ > 1. Hence, β∗ cannot be optimal to (53).

4) γ = 2/3 : In this case, we make two comparisons, using the points β∗, (0, 0), and (3, 2):

f(β∗) = 1/2 + µ+ 2µ/3 = 1/2 + 5µ/3

f(0, 0) = 2

f(3, 2) = 2µ.

Assuming optimality of β∗, we have that f(β∗) ≤ f(0, 0), i.e., µ ≤ 9/10; similarly, f(β∗) ≤

f(3, 2), i.e., µ ≥ 3/2. Clearly both cannot hold, and so therefore β∗ cannot be optimal.
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5) γ = 1 : Finally, we see that f(β∗) ≤ f(3, 2) would imply that 1/2 + 2µ ≤ 2µ, which is

impossible; hence, β∗ is not optimal to (53). (This argument can clearly also be used in the

case when γ > 1, although it is instructive to see the argument given above in that case.)

In any case, we have that β∗ cannot be a solution to the clipped Lasso problem (53). This

completes the proof of validity of Example IV.4.

APPENDIX C

SUPPLEMENTARY DETAILS FOR ALGORITHMS

This appendix contains further details on algorithms as discussed in Section V. The presen-

tation here is primarily self-contained. Note that the alternating minimization scheme based on

difference-of-convex optimization can be found in [39].

A. Alternating minimization scheme

Let us set the following notation:

f(β) = ‖y −Xβ‖22/2 + λTk (β) + η‖β‖1,

f1(β) = ‖y −Xβ‖22/2 + (η + λ)‖β‖1,

f2(β) = λ
∑k

i=1 |β(i)|.

Definition C.1. For any function F : Rp → R and ε ≥ 0, we define the ε-subdifferential of F

at β0 ∈ Rp to be the set ∂εF (β0) defined as

{γ ∈ Rp : F (β)− F (β0) ≥ 〈γ,β − β0〉 − ε ∀ β ∈ Rp} .

In particular, when ε = 0, we refer to ∂0F (β0) as the subdifferential of F at β0, and we will

denote this as ∂F (β0).

Using this definition, we have the following result precisely characterizing local and global

optima of (36).

Theorem C.2. (a) A point β∗ is a local minimum of f if and only if ∂f2(β∗) ⊆ ∂f1(β
∗).

(b) A point β∗ is a global minimum of f if and only if ∂εf2(β∗) ⊆ ∂εf1(β
∗) for all ε ≥ 0.

Proof. This is a direct application of results in [66, Thm. 1]. Part (b) is immediate. The forward

implication of part (a) is immediate as well; the converse implication follows by observing that

f2 is a polyhedral convex function [2, Thm. 1(ii)] (see definition therein).
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Let us note that ∂f1 and ∂f2 are both easily computable, and hence, local optimality can be

verified given some candidate β∗ per Theorem C.2.15 We now discuss the associated alternating

minimization scheme (or equivalently, as a sequential linearization scheme), shown in Algorithm

1 for finding local optima of (36) by making use of Theorem C.2. Through what follows, we

make use of the standard notion of a conjugate function, defined as follows:

Definition C.3. For any function F : Rp → R, we define its conjugate function F ∗ : Rp → R to

be the function

F ∗(γ) = sup
β
〈γ,β − F (β)〉.

We will make the following minor technical assumption: in step 2) of Algorithm 1, we assume

without loss of generality that the γ` so computed satisfies the additional criteria:

1) it is an extreme point of the relevant feasible region,

2) and that if ∂f2(β`) 6⊆ ∂f1(β
`), then γ` is chosen such that γ` ∈ ∂f2(β`) \ ∂f1(β`).

Solving (37) with these additional assumptions can nearly be solved in closed form by simply

sorting the entries of |β|, i.e., by finding |β(1)|, . . . , |β(p)|.We must take some care to ensure

that the second without loss of generality condition on γ is satisfied. This is straightforward but

tedious; the details are shown in Appendix C-B.

Using this modification, the convergence properties of Algorithm 1 can be proven as follows:

Proof of Theorem V.1. This is an application of [66, Thms. 3-5]. The only modification is in

requiring that γ` is chosen so that γ` ∈ ∂f2(β∗)\∂f1(β∗) if β` is not a local minimum of f—see

[66, §3.3] for a motivation and justification for such a modification. Finally, the correspondence

between γ` ∈ ∂f2(β
`) and (37), and between β`+1 ∈ ∂f ∗1 (γ`) and (38), is clear from an

elementary argument applied to subdifferentials of variational formulations of functions.

B. Algorithm 1, Step 2

Here we present the details of solving (37) in Algorithm 1 in a way that ensures that the

associated without loss of generality claims hold. In doing so, we also implicitly study how

15For the specific functions of interest, verifying local optimality of a candidate β∗ can be performed in O(pmin{n, p} +

p log p) operations; the first component relates to the computation of X′Xβ∗, while the second captures the sorting of the

entries of β∗. See Appendix C-B for details.
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to verify the conditions for local optimality (c.f. Theorem C.2). Throughout, we use the sgn

function defined as

sgn(x) =


1, x > 0

−1, x < 0

0, x = 0.

For fixed β, the problem of interest is

max
γ
〈β,γ〉

s. t.
∑
i

|γi| ≤ λk

|γi| ≤ λ ∀i.

We wish to find a maximizer γ for which the following hold:

1) γ is an extreme point of the relevant feasible region,

2) and that if ∂f2(β) 6⊆ ∂f1(β), then γ is such that γ ∈ ∂f2(β) \ ∂f1(β).

As the problem on its own can be solved by sorting the entries of β, the crux of the problem

is ensuring that 2) holds.

Given the highly structured nature of f1 and f2 in our setup, it is simple, albeit tedious, to

ensure that such a condition is satisfied. Let I = {i : |βi| = |β(k)|}. If |I| = 1, the optimal

solution is unique, and there is nothing to show. Therefore, we will assume that |I| ≥ 2. We

will construct an optimal solution γ which satisfies the desired conditions. First observe that we

necessarily must have that 1) γi = λ sgn(βi) if |βi| > |β(k)| and 2) γi = 0 if |βi| < |β(k)|. We

now proceed to define the rest of the entries of γ. We consider two cases:

1) First consider the case when |β(k)| > 0. We claim that ∂f2(β) 6⊆ ∂f1(β). To do so, we

will inspect the ith entries of ∂f1(β) for i ∈ I; as such, let P j
i = {δi : δ ∈ ∂fj(β)} for

j ∈ {1, 2} and i ∈ I (a projection). For each i ∈ I , we have using basic convex analysis

that P 1
i is a singelton: P 1

i = {〈Xi,Xβ−y〉+ (η+λ) sgn(βi)}, where Xi is the ith column

of X. In contrast, because |I| ≥ 2, the set P 2
i is an interval with strictly positive length

for each i ∈ I (it is either [−λ, 0] or [0, λ], depending on whether βi < 0 or βi > 0,

respectively). Therefore, ∂f2(β) 6⊆ ∂f1(β), as claimed.

Fix an arbitrary j ∈ I . Per the above argument, we must have that 〈Xj,Xβ − y〉 + (η +

λ) sgn(βj) 6= 0 or 〈Xj,Xβ − y〉 + (η + λ) sgn(βj) 6= λ sgn(βj). In the former case, set

γi = 0, while in the latter case we define γi = λ sgn(βi) (if both are true, either choice

suffices). It is clear that it is possible to fill in the remaining entries of γi for i ∈ I \ {j}
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in a straightforward manner so that γ ∈ ∂f2(β). Further, by construction, γ /∈ ∂f1(β), as

desired.

2) Now consider the case when |β(k)| = 0. Using the preceding argument, we see that P 1
i is

the interval [〈Xi,Xβ − y〉 − (η + λ), 〈Xi,Xβ − y〉 + η + λ] for i ∈ I . In contrast, P 2
i is

the interval [−λ, λ] for i ∈ I . If for all i ∈ I one has that P 2
i ⊆ P 1

i , then the choice of γi

for i ∈ I is obvious: any optimal extreme point γ of the problem will suffice. (Note here

that it may or may not be that ∂f2(β) ⊆ ∂f1(β). This entirely depends on βi for i /∈ I .)

Therefore, we may assume that there exists some j ∈ I so that P 2
j 6⊆ P 1

j . (It follows

immediately that ∂f2(β) 6⊆ ∂f1(β).) We must have that 〈Xj,Xβ − y〉 − (η + λ) > −λ or

〈Xj,Xβ − y〉+ (η + λ) < λ. In the former case, set γi = −λ, while in the latter case we

define γi = λ (if both are true, either choice suffices). It is clear that it is possible to fill in

the remaining entries of γi for i ∈ I \ {j} in a straightforward manner so that γ ∈ ∂f2(β).

By construction, γ /∈ ∂f1(β), as desired.

In either case, we have that one can choose γ ∈ ∂f2(β) so that 1) γ is an extreme point

of the feasible region {γ :
∑

i |γi| ≤ λk, |γi| ≤ λ ∀i} and that 2) γ ∈ ∂f2(β) \ ∂f1(β)

whenever ∂f2(β) 6⊆ ∂f1(β). This concludes the analysis; thus, we have shown the validity (and

computational feasibility) of the without loss of generality claim present in Algorithm 1. Indeed,

per our analysis, Step 2 in Algorithm 1 can be solved in O(pmin{n, p} + p log p) operations

(sorting of β in O(p log p) followed by O(p) conditionals and gradient evaluation in O(np)). In

reality, if we keep track of gradients in Step 3, there is no need to recompute gradients in Step

2, and therefore in practice Step 2 is of the same complexity of sorting a list of p numbers. (We

assume that X′y has been computed offline and store throughout for simplicity.)

C. Algorithm 2, Step 3

Here we show how to solve Step 3 in Algorithm 2, namely, solving the orthogonal design

trimmed Lasso problem

min
γ
λTk (γ) +

σ

2
‖β − γ‖22 − 〈q,γ〉, (54)
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where β and q are fixed. This is solvable in closed form. Let α = β − q/σ. First observe that

we can rewrite (54) as

(54) = min
γ
λTk (γ) + σ‖γ −α‖22/2

= min
γ,z:∑

i zi=p−k
z∈{0,1}p

λ〈z, |γ|〉+ σ‖γ −α‖22/2

= min
γ,z:∑

i zi=p−k
z∈{0,1}p

∑
i

(
λzi|γ|+ σ(γi − αi)2/2

)
.

The penultimate step follows via Lemma II.1. Per this final representation, the solution becomes

clear. In particular, let I be a set of k indices of α corresponding to α(1), α(2), . . . , α(k). (If

|α(k)| = |α(k+1)|, we break ties arbitrarily.) Then a solution γ∗ to (54) is

γ∗i =

 αi, i ∈ I

softλ/σ(αi), i /∈ I,

where softλ/σ(αi) = sgn(αi) |αi − λ/σ|.

D. Computational details

For completeness and reproducibility, we also include all computational details. For Figure 3,

the following parameters were used to generate the test instance: n = 100, p = 20, SNR = 10,

julia seed = 1, η = 0.01, k = 2. The example was generated from the following true model:

1) βtrue is a vector with ten entries equal to 1 and all others equal to zero. (So ‖βtrue‖0 = 10.)

2) covariance matrix Σ is generated with Σij = .8|i−j|.

3) X ∼ N(0,Σ).

4) εi
i.i.d.∼ N(0,β′0Σβ0/SNR)

5) y is then defined as Xβ0 + ε

The 100 examples generated for Figure 4 were using the following parameters: n = 100,

p = 20, SNR = 10, julia seed ∈ {1, . . . , 100}, η = 0.01, k = 2, bigM = 20. MIO using

Gurobi solver. Max iterations: alternating minimization—1000; ADMM (inner)—2000; ADMM

(outer)—10000. ADMM parameters: σ = 1, τ = 0.9. The examples themselves had the same

structure as the previous example. The optimal gaps shown are relative to the objective in

(36). The averages are computed as geometric means (relative to optimal 100%) across the 100

instances, and then displayed relative to the optimal 100%.
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